Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct;327(1):130-6.
doi: 10.1124/jpet.108.139659. Epub 2008 Jul 1.

Simvastatin inhibits catecholamine secretion and synthesis induced by acetylcholine via blocking Na+ and Ca2+ influx in bovine adrenal medullary cells

Affiliations

Simvastatin inhibits catecholamine secretion and synthesis induced by acetylcholine via blocking Na+ and Ca2+ influx in bovine adrenal medullary cells

Taeko Matsuda et al. J Pharmacol Exp Ther. 2008 Oct.

Abstract

Simvastatin, an inhibitor of HMG-CoA reductase, is a potent inhibitor of cholesterol biosynthesis and has beneficial effects in the primary and secondary prevention of cardiovascular diseases. In this study, we report the effects of simvastatin on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells used as a model of sympathetic neurons. Simvastatin inhibited catecholamine secretion induced by acetylcholine, an agonist of the nicotinic acetylcholine receptor; by veratridine, an activator of voltage-dependent Na(+) channels; and by high K(+), an activator of voltage-dependent Ca(2+) channels (IC(50) = 3.8, 7.8, and 6.1 microM, respectively). Simvastatin also suppressed acetylcholine-induced (22)Na(+) influx (IC(50) = 4.3 microM) and (45)Ca(2+) influx (IC(50) = 6.1 microM), veratridine-induced (22)Na(+) influx (IC(50) = 6.6 microM) and (45)Ca(2+) influx (IC(50) = 12 microM), and high K(+)-induced (45)Ca(2+) influx (IC(50) = 11 microM). The reduction of catecholamine secretion caused by simvastatin was not overcome by increasing the concentration of acetylcholine or by treatment with mevalonate, the first metabolite of HMG-CoA. The inhibitory effect of simvastatin on histamine-induced secretion of catecholamines was observed in the presence of extracellular Ca(2+), but not in a Ca(2+)-free medium, suggesting that simvastatin does not interfere with histamine receptors nonselectively. Simvastatin also suppressed acetylcholine-induced [(14)C]catecholamine synthesis from [(14)C]tyrosine as well as tyrosine hydroxylase activity. These findings suggest that simvastatin inhibits catecholamine secretion and synthesis induced by acetylcholine through suppression of Na(+) and Ca(2+) influx in the adrenal medulla and probably in the sympathetic neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources