Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Nov;23(11):1957-72.
doi: 10.1007/s00467-008-0872-4. Epub 2008 Jul 2.

Complement and the atypical hemolytic uremic syndrome in children

Affiliations
Review

Complement and the atypical hemolytic uremic syndrome in children

Chantal Loirat et al. Pediatr Nephrol. 2008 Nov.

Abstract

Over the past decade, atypical hemolytic uremic syndrome (aHUS) has been demonstrated to be a disorder of the regulation of the complement alternative pathway. Among approximately 200 children with the disease, reported in the literature, 50% had mutations of the complement regulatory proteins factor H, membrane cofactor protein (MCP) or factor I. Mutations in factor B and C3 have also been reported recently. In addition, 10% of children have factor H dysfunction due to anti-factor H antibodies. Early age at onset appears as characteristic of factor H and factor I mutated patients, while MCP-associated HUS is not observed before age 1 year. Low C3 level may occur in patients with factor H and factor I mutation, while C3 level is generally normal in MCP-mutated patients. Normal plasma factor H and factor I levels do not preclude the presence of a mutation in these genes. The worst prognosis is for factor H-mutated patients, as 60% die or reach end-stage renal disease (ESRD) within the first year after onset of the disease. Patients with mutations in MCP have a relapsing course, but no patient has ever reached ESRD in the first year of the disease. Half of the patients with factor I mutations have a rapid evolution to ESRD, but half recover. Early intensive plasmatherapy appears to have a beneficial effect, except in MCP-mutated patients. There is a high risk of graft loss for HUS recurrence or thrombosis in all groups except the MCP-mutated group. Recent success of liver-kidney transplantation combined with plasmatherapy opens this option for patients with mutations of factors synthesized in the liver. New therapies such as factor H concentrate or complement inhibitors offer hope for the future.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Complement activation and control. aHUS is a disease resulting from inefficient protection of the surfaces of the host’s endothelial cells in the setting of complement activation. (1) Activation of complement and covalent attachment of complement C3 to the microbial surfaces. C3b binds CFB, inducing formation of the alternative C3 convertase (C3bBb) and amplification of the C3 cleavage. (2) Protection of self cell surfaces. Regulation of the cleavage of C3 is critical. Under normal conditions the formation of C3 convertase is tightly controlled by CFH, MCP, and CFI. (3) In the case of aHUS, activation is uncontrolled and C3 convertase is formed, resulting in formation of inflammatory mediators. CFH does not attach to surfaces through its heparin/anionic-binding sites, and, thus, CFB binds C3b. Degradation of C3b to iC3b is defective in the absence of CFI and its cofactors (CFH and MCP) (from [24], with permission of the authors and Wiley–Blackwell Publishing)
Fig. 2
Fig. 2
CFH mutations in the French (upper line) and Italian (lower line) pediatric cohorts. Mutations in blue indicate low plasma CFH level; mutations in black indicate normal plasma CFH level. Ho homozygous
Fig. 3
Fig. 3
C3 plasma concentration in 101 children with aHUS (Italian and French pediatric cohorts), according to genetic subgroup. Triangles homozygous mutation; horizontal line represents 2SDs of normal
Fig. 4
Fig. 4
MCP mutations in the Italian (left) and French (right) pediatric cohorts. Ho homozygous
Fig. 5
Fig. 5
CFI mutations in the French (upper line) and Italian (lower line) pediatric cohorts
Fig. 6
Fig. 6
Intrafamilial phenotype variability in a family with heterozygous CFH mutation (W 1183 R, SCR 20). Ages are given in years. Affected individuals are indicated by filled symbols, deceased individuals by a diagonal line. Carriers of CFH mutation are indicated by asterisks. m months

References

    1. Besbas N, Karpman D, Landau D, Loirat C, Proesmans W, Remuzzi G, Rizzoni G, Taylor CM, Van de Kar N, Zimmerhackl LB. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70:423–431. - PubMed
    1. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290:1360–1370. - PubMed
    1. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16:1035–1050. - PubMed
    1. Caprioli J, Bettinaglio P, Zipfel PF, Amadei B, Daina E, Gamba S, Skerka C, Marziliano N, Remuzzi G, Noris M. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol. 2001;12:297–307. - PubMed
    1. Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, Gamba S, Brioschi S, Daina E, Remuzzi G, Noris M. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003;12:3385–3395. - PubMed

MeSH terms

Substances