Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;14(7):1074-80.
doi: 10.3201/eid1407.071110.

Transmission of Bartonella henselae by Ixodes ricinus

Affiliations

Transmission of Bartonella henselae by Ixodes ricinus

Violaine Cotté et al. Emerg Infect Dis. 2008 Jul.

Abstract

Bartonella spp. are facultative intracellular bacteria associated with several emerging diseases in humans and animals. B. henselae causes cat-scratch disease and is increasingly associated with several other syndromes, particularly ocular infections and endocarditis. Cats are the main reservoir for B. henselae and the bacteria are transmitted to cats by cat fleas. However, new potential vectors are suspected of transmitting B. henselae, in particular, Ixodes ricinus, the most abundant ixodid tick that bites humans in western Europe. We used a membrane-feeding technique to infect I. ricinus with B. henselae and demonstrate transmission of B. henselae within I. ricinus across developmental stages, migration or multiplication of B. henselae in salivary glands after a second meal, and transmission of viable and infective B. henselae from ticks to blood. These results provide evidence that I. ricinus is a competent vector for B. henselae.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Experimental framework of Ixodes ricinus tick infection by Bartonella henselae–infected blood. Ticks (200 larvae, 178 nymphs, and 55 female adults) were engorged by feeding through artificial skin on B. henselae–infected blood for 5 days for larvae, 12 days for nymphs, and 21 days for adults. Larvae and nymphs were allowed to molt and engorged females were allowed to lay eggs. To evaluate transtadial and transovarial transmission, Bartonella spp. DNA was detected by PCR in salivary glands (SGs) and carcasses of 9 nymphs, 6 female adults, 9 pools of eggs, and resulting pools of larvae. Eighteen nymphs and 13 adult females fed on infected blood at preceding stages were refed for 84 h on noninfected blood. Bartonella spp. DNA was detected by PCR in SGs of 7 engorged nymphs and 3 engorged female adults. B. henselae colonies were isolated from SGs of 3 nymphs and 4 adults and from blood removed from feeders. Infectivity of B. henselae in SGs was tested by infecting 2 cats with 1 pair of SGs from a potentially infected nymph and 1 pair of SGs from a potentially infected adult, respectively.
Figure 2
Figure 2
Seminested PCR detection of Bartonella spp. DNA in Ixodes ricinus ticks fed on B. henselae–infected ovine blood at preceding stage. Lane M, 100-bp DNA molecular mass marker; lane Ags, salivary glands of a female adult fed on infected blood as a nymph; lane A, carcass of a female adult fed on infected blood as a nymph; lane Ngs, salivary glands of a nymph fed on infected blood as a larva; lane N, carcass of a nymph fed on infected blood as a larva; lane E, eggs laid by female adult fed on infected blood; lane L, larvae hatched from female adult fed on infected blood; lane T+, B. bacilliformis DNA; lane T–, nymph fed on uninfected ovine blood.
Figure 3
Figure 3
Seminested PCR detection of Bartonella spp. DNA after partial refeeding of infected ticks. A) Bartonella spp. DNA detection in Ixodes ricinus ticks fed on B. henselae–infected blood at previous development stages and refed for 84 h on uninfected blood. Lane M, 100-bp DNA molecular mass; lane A, carcass of female adult; lane Ags, salivary glands of female adult, lane N, carcass of nymph; lane Ngs, salivary glands of nymph; lane T+, B. bacilliformis DNA; lane T–, nymph fed on uninfected ovine blood. B) Bartonella spp. DNA detection in blood isolated from feeders. Lane M, 100-bp DNA molecular mass marker; lane 48, ovine blood after 48 h of tick attachment on skin; lane 60, ovine blood after 60 h of tick attachment on skin; lane 72, ovine blood after 72 h of tick attachment on skin; lane 84, ovine blood after 84 h of tick attachment on skin; lane T+, B. bacilliformis DNA.

References

    1. Boulouis HJ, Chang CC, Henn JB, Kasten RW, Chomel BB. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet Res. 2005;36:383–410. 10.1051/vetres:2005009 - DOI - PubMed
    1. Anderson BE, Neuman MA. Bartonella spp. as emerging human pathogens. Clin Microbiol Rev. 1997;10:203–19. - PMC - PubMed
    1. Oteo JA, Castilla A, Arosey A, Blanco JR, Ibarra V, Morano LE. Endocarditis due to Bartonella spp. Three new clinical cases and Spanish literature review [in Spanish]. Enferm Infecc Microbiol Clin. 2006;24:297–301. 10.1157/13089663 - DOI - PubMed
    1. Marsilia GM, La Mura A, Galdiero R, Galdiero E, Aloj G, Ragozzino A. Isolated hepatic involvement of cat scratch disease in immunocompetent adults: enhanced magnetic resonance imaging, pathological findings, and molecular analysis–two cases. Int J Surg Pathol. 2006;14:349–54. 10.1177/1066896906291780 - DOI - PubMed
    1. Curi AL, Machado DO, Heringer G, Campos WR, Orefice F. Ocular manifestation of cat-scratch disease in HIV-positive patients. Am J Ophthalmol. 2006;141:400–1. 10.1016/j.ajo.2005.08.072 - DOI - PubMed

Publication types

LinkOut - more resources