Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug;13(7):575-80.
doi: 10.1177/1087057108320133. Epub 2008 Jul 3.

Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates

Affiliations

Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates

Holger Erfle et al. J Biomol Screen. 2008 Aug.

Abstract

Solid-phase reverse transfection on cell microarrays is a high-throughput method for the parallel transfection of mammalian cells. However, the cells transfected in this way have been restricted so far to microscopy-based analyses. Analysis methods such as reverse transcriptase-polymerase chain reaction (RT-PCR) and access to higher cell numbers for statistical reasons in microscopy-based assays are not possible with solid-phase reverse transfection on cell microarrays. We have developed a quick and reliable protocol for automated solid-phase reverse transfection of human cells with siRNAs in multiwell plates complementing solid-phase reverse transfection on cell microarrays. The method retains all advantages of solid-phase reverse transfection such as long-term storage capacity after fabrication, reduced cytotoxicity, and reduced cost per screen compared with liquid-phase transfection in multiwell plates. The protocol has been tested for the RNAi-mediated knockdown of several genes in different cell lines including U20S, RPE1, A549, and HeLa cells. We show that even 3 months after production of the "ready to transfect" multiwell plates, there is no reduction in their transfection efficiency as assessed by RT-PCR and nuclear phenotyping by fluorescence microscopy. We conclude that solid-phase reverse transfection in multiwell plates is a cost-efficient and flexible tool for multiplexing cellular assays.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources