Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jun;27(6):681-91.
doi: 10.1080/15257770802143988.

The role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor behavior

Affiliations
Review

The role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor behavior

I V Bijnsdorp et al. Nucleosides Nucleotides Nucleic Acids. 2008 Jun.

Abstract

Platelet-derived endothelial cell growth-factor (PD-ECGF) is similar to the pyrimidine enzyme thymidine phosphorylase (TP). A high TP expression at tumor sites is correlated with tumor growth, induction of angiogenesis, and metastasis. Therefore, high TP is most likely associated with a poor prognosis. TP is not only expressed in tumor cells but also in tumor surrounding tissues, such as tumor infiltrating macrophages. TP catalyzes the conversion of thymidine to thymine and doxyribose-1-phosphate (dR-1-P). The latter in its parent form or in its sugar form, deoxyribose (dR) may play a role in the induction of angiogenesis. It may modulate cellular energy metabolism or be a substrate in a chemical reaction generating reactive oxygen species. L-deoxyribose (L-dR) and thymidine phosphorylase inhibitor (TPI) can reverse these effects. The mechanism of TP induction is not yet completely clear, but TNF, IL10 and other cytokines have been clearly shown to induce its expression. The various complex interactions of TP give it an essential role in cellular functioning and, hence, it is an ideal target in cancer therapy.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources