Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jul;9(7):716-25.

Homomeric and heteromeric P2X3 receptors in peripheral sensory neurons

Affiliations
  • PMID: 18600577
Review

Homomeric and heteromeric P2X3 receptors in peripheral sensory neurons

Jill-Desiree Brederson et al. Curr Opin Investig Drugs. 2008 Jul.

Abstract

ATP contributes to nociceptive sensory processing by activating a family of ligand-gated ion channels, the P2X receptors. One of these, the P2X3 receptor, is highly localized on primary afferent neurons. In sensory neurons, P2X3 receptors function as homomeric (P2X3) and heteromeric (P2X2/3) channels. Exogenous application of ATP and related agonists excites peripheral and central nerves, and increases sensitivity to noxious stimuli. Specific targeting of P2X3 receptors by gene deletion and knockdown results in a hypoalgesic phenotype. In animal models of pain, pharmacological blockade of P2X3 receptors fully blocked specific types of chronic inflammatory and neuropathic pain. Peripheral nerve injury differentially alters functional expression of P2X3 receptors on small and large diameter primary afferent neurons. These data have delineated discrete roles for homomeric P2X3 and heteromeric P2X2/3 receptor activation in acute and chronic pain. Similar findings have also been generated from extensive research of the bladder urothelial-sensory neuron system. The urinary bladder is richly innervated by P2X3 receptor-containing neurons. Heteromeric P2X2/3 channels in the bladder contribute to both mechanosensitivity and nociceptive responses. Thus, both genetic and pharmacological approaches have provided converging evidence that activation of P2X3-containing channels is an important mediator of acute and persistent nociceptive signaling in the peripheral nervous system.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources