Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;14(11):1893-903.
doi: 10.1089/ten.tea.2007.0243.

Pore architecture of a bovine acellular vocal fold scaffold

Affiliations

Pore architecture of a bovine acellular vocal fold scaffold

Chet C Xu et al. Tissue Eng Part A. 2008 Nov.

Abstract

An acellular xenogeneic scaffold derived from the bovine vocal fold lamina propria has shown some promise for in vitro vocal fold tissue engineering. To further explore the potential of the scaffold for cellular attachment, migration, and infiltration, as well as the transport of oxygen, proteins, and nutrients in vivo, this study examined the architecture of pores in the scaffold in terms of several key parameters. Porosity was determined using a standard fluid replacement method with a pycnometer. Average pore size and the pore size distribution were assessed using digital image analysis of scanning electron micrographs. The intrinsic permeability to water was measured using a custom-built hydrostatic pressure apparatus as an estimation of the overall porous nature of the acellular scaffold. The results indicated that the bovine acellular scaffold has a reasonably high porosity (90.49 +/- 4.33%), a proper pore size distribution (>60% of the pores with equivalent diameters > or =10 microm and < 100 microm) that could facilitate cellular attachment and infiltration, as well as a relatively high intrinsic permeability (0.21-3.21 darcy) for the transport of soluble factors. These findings offered preliminary support of the potential of the scaffold for facilitating functional extracellular matrix remodeling in vocal fold reconstruction.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources