Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Sep 1;157(3):591-8.
doi: 10.1042/bj1570591.

Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c

Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c

C Greenwood et al. Biochem J. .

Abstract

The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this 'burst' phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.

PubMed Disclaimer

References

    1. FEBS Lett. 1972 Dec 15;28(3):297-301 - PubMed
    1. J Biol Chem. 1964 Apr;239:1221-7 - PubMed
    1. Biochim Biophys Acta. 1974 Mar 26;333(3):421-9 - PubMed
    1. J Biol Chem. 1962 Jul;237:2337-46 - PubMed
    1. Biochem J. 1974 Feb;137(2):205-15 - PubMed

Substances