Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence?
- PMID: 18604169
- PMCID: PMC2710769
- DOI: 10.4161/cc.7.13.6206
Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence?
Abstract
Although it is tempting to speculate that the transcription-dependent heterochromatin assembly pathway found in fission yeast may operate in higher mammals, transcription of heterochromatin has been difficult to substantiate in mammalian cells. We recently demonstrated that transcription from the mouse pericentric heterochromatin major (gamma) satellite repeats is under cell cycle control, being sharply downregulated at the metaphase to anaphase transition and resuming in late G(1)-phase dependent upon passage through the restriction point. The highest rates of transcription were in early S-phase and again in mitosis with different RNA products detected at each of these times.(1) Importantly, differences in the percentage of cells in G(1)-phase can account for past discrepancies in the detection of major satellite transcripts and suggest that pericentric heterochromatin transcription takes place in all proliferating mammalian cells. A similar cell cycle regulation of heterochromatin transcription has now been shown in fission yeast,(2,3) providing further support for a conserved mechanism. However, there are still fundamental differences between these two systems that preclude the identification of a functional or mechanistic link.
Similar articles
-
Coordination of DNA replication and histone modification by the Rik1-Dos2 complex.Nature. 2011 Jul 3;475(7355):244-8. doi: 10.1038/nature10161. Nature. 2011. PMID: 21725325 Free PMC article.
-
Cell cycle control of centromeric repeat transcription and heterochromatin assembly.Nature. 2008 Feb 7;451(7179):734-7. doi: 10.1038/nature06561. Epub 2008 Jan 23. Nature. 2008. PMID: 18216783
-
Centromeric heterochromatin assembly in fission yeast--balancing transcription, RNA interference and chromatin modification.Chromosome Res. 2012 Jul;20(5):521-34. doi: 10.1007/s10577-012-9288-x. Chromosome Res. 2012. PMID: 22733402 Free PMC article. Review.
-
Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres.Science. 2009 Jun 26;324(5935):1716-9. doi: 10.1126/science.1172026. Science. 2009. PMID: 19556509 Free PMC article.
-
The Yeast Genomes in Three Dimensions: Mechanisms and Functions.Annu Rev Genet. 2017 Nov 27;51:23-44. doi: 10.1146/annurev-genet-120116-023438. Epub 2017 Aug 30. Annu Rev Genet. 2017. PMID: 28853923 Review.
Cited by
-
Epigenetic modifications in sex heterochromatin of vole rodents.Chromosoma. 2015 Sep;124(3):341-51. doi: 10.1007/s00412-014-0502-9. Epub 2014 Dec 21. Chromosoma. 2015. PMID: 25527445
-
DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions.Hum Mol Genet. 2009 Sep 1;18(17):3178-93. doi: 10.1093/hmg/ddp256. Epub 2009 May 29. Hum Mol Genet. 2009. PMID: 19482874 Free PMC article.
-
Centromeres Transcription and Transcripts for Better and for Worse.Prog Mol Subcell Biol. 2021;60:169-201. doi: 10.1007/978-3-030-74889-0_7. Prog Mol Subcell Biol. 2021. PMID: 34386876
-
Non-coding RNAs enter mitosis: functions, conservation and implications.Cell Div. 2011 Feb 28;6:6. doi: 10.1186/1747-1028-6-6. Cell Div. 2011. PMID: 21356070 Free PMC article.
-
Epigenetic inheritance during the cell cycle.Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206. doi: 10.1038/nrm2640. Nat Rev Mol Cell Biol. 2009. PMID: 19234478 Review.
References
-
- Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature. 2008;451:734–737. - PubMed
-
- Heitz E. Das Heterochromatin der Moose. I Jahrb Wiss Botanik. 1928;69:762-18.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous