Towards environmental systems biology of Shewanella
- PMID: 18604222
- DOI: 10.1038/nrmicro1947
Towards environmental systems biology of Shewanella
Abstract
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.
Similar articles
-
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.Biosens Bioelectron. 2008 Jan 18;23(6):820-6. doi: 10.1016/j.bios.2007.08.021. Epub 2007 Sep 6. Biosens Bioelectron. 2008. PMID: 17931851
-
Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells.Appl Microbiol Biotechnol. 2018 Sep;102(18):8093-8106. doi: 10.1007/s00253-018-9212-1. Epub 2018 Jul 9. Appl Microbiol Biotechnol. 2018. PMID: 29987384
-
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.Appl Environ Microbiol. 2016 Aug 15;82(17):5428-43. doi: 10.1128/AEM.01615-16. Print 2016 Sep 1. Appl Environ Microbiol. 2016. PMID: 27342561 Free PMC article.
-
On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.World J Microbiol Biotechnol. 2018 Dec 19;35(1):9. doi: 10.1007/s11274-018-2576-7. World J Microbiol Biotechnol. 2018. PMID: 30569420 Review.
-
Towards development of electrogenetics using electrochemically active bacteria.Biotechnol Adv. 2019 Nov 1;37(6):107351. doi: 10.1016/j.biotechadv.2019.02.007. Epub 2019 Feb 16. Biotechnol Adv. 2019. PMID: 30779953 Review.
Cited by
-
A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime.ISME J. 2015 Aug;9(8):1802-11. doi: 10.1038/ismej.2014.264. Epub 2015 Jan 30. ISME J. 2015. PMID: 25635641 Free PMC article.
-
Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1.Appl Environ Microbiol. 2012 Jun;78(12):4400-11. doi: 10.1128/AEM.07895-11. Epub 2012 Apr 6. Appl Environ Microbiol. 2012. PMID: 22492434 Free PMC article.
-
Regeneration of unconventional natural gas by methanogens co-existing with sulfate-reducing prokaryotes in deep shale wells in China.Sci Rep. 2020 Sep 29;10(1):16042. doi: 10.1038/s41598-020-73010-6. Sci Rep. 2020. PMID: 32994524 Free PMC article.
-
The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation.Front Microbiol. 2016 Sep 7;7:1418. doi: 10.3389/fmicb.2016.01418. eCollection 2016. Front Microbiol. 2016. PMID: 27656177 Free PMC article.
-
Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis.Front Microbiol. 2015 Apr 28;6:374. doi: 10.3389/fmicb.2015.00374. eCollection 2015. Front Microbiol. 2015. PMID: 25972854 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources