Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;14(24):7306-13.
doi: 10.1002/chem.200800532.

Enhanced cooperativity through design: pendant Co(III)--salen polymer brush catalysts for the hydrolytic kinetic resolution of epichlorohydrin (salen=N,N'-bis(salicylidene)ethylenediamine dianion)

Affiliations

Enhanced cooperativity through design: pendant Co(III)--salen polymer brush catalysts for the hydrolytic kinetic resolution of epichlorohydrin (salen=N,N'-bis(salicylidene)ethylenediamine dianion)

Christopher S Gill et al. Chemistry. 2008.

Abstract

The Co(III)--salen-catalyzed (salen=N,N'-bis(salicylidene)ethylenediamine dianion) hydrolytic kinetic resolution (HKR) of racemic epoxides has emerged as a highly attractive and efficient method of synthesizing chiral C(3) building blocks for intermediates in larger, more complex molecules. HKR reaction rates have displayed a second order dependency on the concentration of active sites, and thus researchers have proposed a bimetallic transition state for the HKR mechanism. Here we report the utilization of pendant Co(III)--salen catalysts on silica supported polymer brushes as a catalyst for the HKR of epichlorohydrin. The novel polymer brush architecture provided a unique framework for promoting site-site interactions as required in the proposed bimetallic transition state of the HKR mechanism. Furthermore, the polymer brushes mimic the environment of soluble polymer-based catalysts, whereas the silica support permitted facile recovery and reuse of the catalyst. The polymer brush catalyst displayed increased activities over the soluble Jacobsen Co--salen catalyst and was observed to retain its high enantioselectivities (>99 %) after each of five reactions despite decreasing activities. Analysis indicated decomposition of the salen ligand as an underlying cause of catalyst deactivation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources