Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 15;42(12):4447-53.
doi: 10.1021/es7029637.

Exposure modeling of engineered nanoparticles in the environment

Affiliations

Exposure modeling of engineered nanoparticles in the environment

Nicole C Mueller et al. Environ Sci Technol. .

Abstract

The aim of this study was to use a life-cycle perspective to model the quantities of engineered nanoparticles released into the environment. Three types of nanoparticles were studied: nano silver (nano-Ag), nano TiO2 (nano-TiO2), and carbon nanotubes (CNT). The quantification was based on a substance flow analysis from products to air, soil, and water in Switzerland. The following parameters were used as model inputs: estimated worldwide production volume, allocation of the production volume to product categories, particle release from products, and flow coefficients within the environmental compartments. The predicted environmental concentrations (PEC) were then compared to the predicted no effect concentrations (PNEC) derived from the literature to estimate a possible risk. The expected concentrations of the three nanoparticles in the different environmental compartments vary widely, caused by the different life cycles of the nanoparticle-containing products. The PEC values for nano-TiO2 in water are 0.7--16 microg/L and close to or higher than the PNEC value for nano-TiO2 (< 1 microg/L). The risk quotients (PEC/PNEC) for CNT and nano-Ag were much smaller than one, therefore comprising no reason to expect adverse effects from those particles. The results of this study make it possible for the first time to carry out a quantitative risk assessment of nanoparticles in the environment and suggest further detailed studies of nano-TiO2.

PubMed Disclaimer

LinkOut - more resources