Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Sep;74(17):5402-7.
doi: 10.1128/AEM.02689-07. Epub 2008 Jul 7.

Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry

Affiliations
Comparative Study

Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry

Sukhadeo B Barbuddhe et al. Appl Environ Microbiol. 2008 Sep.

Abstract

Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic "fingerprint" mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
MALDI-TOF MS spectra of whole-cell extracts of Listeria reference strains. Spectra representative of the MS profile were obtained from the German Collection of Microorganisms and Cell Cultures. The absolute intensities of the ions are shown on the y axis, and the masses (in Da) of the ions are shown on the x axis. The m/z value stands for mass to charge ratio. For a single positive charge, this value corresponds to the molecular weight of the protein.
FIG. 2.
FIG. 2.
Discriminating peaks of Listeria strains analyzed by MALDI-TOF MS. The absolute intensities of the ions are shown on the y axis, and the masses (in Da) of the ions are shown on the x axis. The m/z value stands for mass to charge ratio. For a single positive charge, this value corresponds to the molecular weight of the protein.
FIG. 3.
FIG. 3.
Dendrogram derived from a PFGE profile of ApaI macrorestriction showing restriction patterns among the L. monocytogenes serotypes. Isolate identification numbers and serotype are indicated to the right.

References

    1. Arnold, R. J., and J. P. Reilly. 1998. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom. 12:630-636. - PubMed
    1. Bernardo, K., N. Pakulat, M. Macht, O. Krut, H. Seifert, S. Fleer, F. Hunger, and M. Kronke. 2002. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:747-753. - PubMed
    1. Borucki, M. K., M. J. Krug, W. T. Muraoka, and D. R. Call. 2003. Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet. Microbiol. 92:351-362. - PubMed
    1. Bright, J. J., M. A. Claydon, M. Soufian, and D. B. Gordon. 2002. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J. Microbiol. Methods 48:127-138. - PubMed
    1. Call, D. R., M. K. Borucki, and T. E. Besser. 2003. Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J. Clin. Microbiol. 41:632-639. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources