Systems biology of vascular endothelial growth factors
- PMID: 18608994
- PMCID: PMC2722038
- DOI: 10.1080/10739680802095964
Systems biology of vascular endothelial growth factors
Abstract
Several cytokine families have roles in the development, maintenance, and remodeling of the microcirculation. Of these, the vascular endothelial growth factor (VEGF) family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell-surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth-factor expression, processing, and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior.
Figures








References
-
- Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95:884–891. - PubMed
-
- Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM. Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun. 2004;324:909–915. - PubMed
-
- Amaral SL, Linderman JR, Morse MM, Greene AS. Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation. 2001;8:57–67. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources