Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 19;24(16):8634-42.
doi: 10.1021/la8008656. Epub 2008 Jul 9.

Adsorptive separation of isobutene and isobutane on Cu3(BTC)2

Affiliations

Adsorptive separation of isobutene and isobutane on Cu3(BTC)2

Martin Hartmann et al. Langmuir. .

Abstract

The metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples. Isobutane and isobutene adsorption has been studied for all samples at different temperatures in order to check the potential of Cu3(BTC)2 for the separation of small hydrocarbons. While the isobutene adsorption isotherms are of type I according to the IUPAC classification, the shape of the isobutane isotherm is markedly different and closer to type V. Adsorption experiments at different temperatures show that a somewhat higher amount of isobutene is adsorbed as compared to isobutane. Nevertheless, the differential enthalpies of adsorption are only different by about 5 kJ/mol, indicating that a strong interaction between the copper centers and isobutene does not drive the observed differences in adsorption capacity. The calculated breakthrough curves of isobutene and isobutane reveal that a low pressure separation is preferred due to the peculiar shape of the isobutane adsorption isotherms. This has been confirmed by preliminary breakthrough experiments using an equimolar mixture of isobutane and isobutene.

PubMed Disclaimer

LinkOut - more resources