Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;43(11):1146-52.
doi: 10.1002/bit.260431120.

Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture

Affiliations

Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture

J Y Lee et al. Biotechnol Bioeng. 1994 May.

Abstract

For the complete biodegradation of a mixture of benzene, toluene, and p-xylene (BTX), a critical metabolic step that can connect two existing metabolic pathways of aromatic compounds (the tod and the tol pathways) was determined. Toluate-cis-glycol dehydrogenase in the tol pathway was found to attack benzene-cis-glycol, toluene-cis-glycol, and p-xylene-cis-glycol, which are metabolic intermediates of the tod pathway. Based on this observation, a hybrid strain, Pseudomonase putida TB101, was constructed by introduction of the TOL plasmid pWW0 into P. putida F39/D, a derivative of P. putida F1, which is unable to transform cis-glycol compounds to corresponding catechols. The metabolic flux of BTX into the tod pathway was redirected to the tol pathway at the level of cis-glycol compounds by the action of toluate-cis-glycol dehydrogenase in P. putida TB101, resulting in the simultaneous mineralization of BTX mixture without accumulation of any metabolic intermediates. The profile of specific degradation rates showed a similar pattern as that of the specific growth rate of the microorganism, and the maximum specific degradation rates of benzene, toluene, and p-xylene were determined to be about 0.27, 0.86, and 2.89 mg/mg biomass/h, respectively. P. putida TB101 is the first reported microorganism that mineralizes BTX mixture simultaneously. (c) 1994 John Wiley & Sons, Inc.

PubMed Disclaimer

LinkOut - more resources