Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Aug;119(2):118-32.
doi: 10.1016/j.pharmthera.2008.05.009. Epub 2008 Jun 18.

The hERG potassium channel and hERG screening for drug-induced torsades de pointes

Affiliations
Review

The hERG potassium channel and hERG screening for drug-induced torsades de pointes

Jules C Hancox et al. Pharmacol Ther. 2008 Aug.

Abstract

Drug-induced torsades de pointes (TdP) arrhythmia is a major safety concern in the process of drug design and development. The incidence of TdP tends to be low, so early pre-clinical screens rely on surrogate markers of TdP to highlight potential problems with new drugs. hERG (human ether-à-go-go-related gene, alternative nomenclature KCNH2) is responsible for channels mediating the 'rapid' delayed rectifier K+ current (IKr) which plays an important role in ventricular repolarization. Pharmacological inhibition of native IKr and of recombinant hERG channels is a shared feature of diverse drugs associated with TdP. In vitro hERG assays therefore form a key element of an integrated assessment of TdP liability, with patch-clamp electrophysiology offering a 'gold standard'. However, whilst clearly necessary, hERG assays cannot be assumed automatically to provide sufficient information, when considered in isolation, to differentiate 'safe' from 'dangerous' drugs. Other relevant factors include therapeutic plasma concentration, drug metabolism and active metabolites, severity of target condition and drug effects on other cardiac ion channels that may mitigate or exacerbate effects of hERG blockade. Increased understanding of the nature of drug-hERG channel interactions may ultimately help eliminate potential hERG blockade early in the design and development process. Currently, for promising drug candidates integration of data from hERG assays with information from other pre-clinical safety screens remains essential.

PubMed Disclaimer

MeSH terms

Substances