The effects of acute and repeated oroxylin A treatments on Abeta(25-35)-induced memory impairment in mice
- PMID: 18620712
- DOI: 10.1016/j.neuropharm.2008.05.019
The effects of acute and repeated oroxylin A treatments on Abeta(25-35)-induced memory impairment in mice
Abstract
Oroxylin A is a flavonoid that is found in the roots of Scutellaria baicalensis Georgi. The aim of this study was to characterize the effects of oroxylin A on the memory impairments and pathological changes induced by Abeta(25-35) peptide in mice. The ameliorating effect of oroxylin A on memory impairment was investigated using passive avoidance and Y-maze tasks and pathological changes were identified by immunostaining and western blotting. Abeta(25-35) peptide (5nmol) was administered by intracerebroventricular injection. In the acute treatment study, a single dose of oroxylin A (5mg/kg, p.o.) treated 1h before behavioral tests was found to significantly reverse Abeta(25-35)-induced cognitive impairments based on passive avoidance and Y-maze task findings (P<0.05). Moreover, these acute effects of oroxylin A were blocked by diazepam (1mg/kg, i.p.), a GABA(A)/benzodiazepine binding site agonist (P<0.05). On the other hand, our subchronic studies revealed that oroxylin A (1 or 5mg/kg/day, p.o.) for 7 days ameliorated the memory impairment induced by Abeta(25-35) peptide. Moreover, Abeta(25-35)-induced increases in GFAP (an astroglia marker) and OX-42 (a microglia marker), and increases in iNOS positive cells in the hippocampus were found to be attenuated by subchronic oroxylin A (1 or 5mg/kg/day, i.p., P<0.05). In addition, reductions in the immunoreactivity and protein level of ChAT (a cholinergic neuronal cell marker) in the CA3 hippocampal area induced by Abeta(25-35) peptide were also attenuated by oroxylin A. Furthermore, lipid peroxidation induced by Abeta(25-35) was also reduced by oroxylin A. These results suggest that the amelioration of Abeta(25-35) peptide-induced memory impairment by oroxylin A is mediated via the GABAergic neurotransmitter system after a single administration, or by reductions in Abeta(25-35) peptide-induced astrocyte and microglia activations, iNOS expression, lipid peroxidation, and increased cholinergic neurotransmission after subchronic administration.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
