microRNAs: tiny regulators of synapse function in development and disease
- PMID: 18624757
- PMCID: PMC3918062
- DOI: 10.1111/j.1582-4934.2008.00400.x
microRNAs: tiny regulators of synapse function in development and disease
Abstract
The development and function of neuronal circuits within the brain are orchestrated by sophisticated gene regulatory mechanisms. Recently, microRNAs have emerged as a novel class of small RNAs that fine-tune protein synthesis. microRNAs are abundantly expressed in the vertebrate nervous system, where they contribute to the specification of neuronal cell identity. Moreover, microRNAs also play an important role in mature neurons. This review summarizes the current knowledge about the function of microRNAs in the nervous system with special emphasis on synapse formation and plasticity. The second part of this work will discuss the potential involvement of microRNAs in neurologic diseases. The study of brain microRNAs promises to expand our understanding of the mechanisms underlying higher cognitive functions and neurologic diseases.
Figures
References
-
- Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24. - PubMed
-
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. - PubMed
-
- Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. - PubMed
-
- Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36. - PubMed
-
- Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
