Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding
- PMID: 18626019
- PMCID: PMC2481363
- DOI: 10.1073/pnas.0801874105
Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding
Abstract
Many experimental and theoretical studies have suggested a significant role for nonnative interactions in protein folding pathways, but the energetic contributions of these interactions are not well understood. We have addressed the energetics and the position specificity of nonnative hydrophobic interactions by developing a continuum coarse-grained chain model with a native-centric potential augmented by sequence-dependent hydrophobic interactions. By modeling the effect of different hydrophobicity values at various positions in the Fyn SH3 domain, we predicted energetically significant nonnative interactions that led to acceleration or deceleration of the folding rate depending on whether they were more populated in the transition state or unfolded state. These nonnative contacts were centered on position 53 in the Fyn SH3 domain, which lies in an exposed position in a 3(10)-helix. The energetic importance of the predicted nonnative interactions was confirmed experimentally by folding kinetics studies combined with double mutant thermodynamic cycles. By attaining agreement of theoretical and experimental investigations, this study provides a compelling demonstration that specific nonnative interactions can significantly influence folding energetics. Moreover, we show that a coarse-grained model with a simple consideration of hydrophobicity is sufficient for the accurate prediction of kinetically important nonnative interactions.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
-
- Daggett V, Fersht A. The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol. 2003;4:497–502. - PubMed
-
- Kubelka J, Hofrichter J, Eaton WA. The protein folding “speed limit”. Curr Opin Struct Biol. 2004;14:76–88. - PubMed
-
- Jackson SE. How do small single-domain proteins fold? Folding Des. 1998;3:R81–R91. - PubMed
-
- Chan HS, Shimizu S, Kaya H. Cooperativity principles in protein folding. Methods Enzymol. 2004;380:350–379. - PubMed
-
- Dill KA, Chan HS. From Levinthal to pathways to funnels. Nat Struct Biol. 1997;4:10–19. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions