Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;29(9):1807-15.
doi: 10.1093/carcin/bgn162. Epub 2008 Jul 14.

Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells

Affiliations

Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells

Cheng-Wei Lin et al. Carcinogenesis. 2008 Sep.

Abstract

Quercetin (QUE; 3,5,7,3',4'-tetrahydroxyflavone) has been shown to possess several beneficial biological activities including antitumor, anti-inflammation and antioxidant properties; however, the effects of QUE in preventing invasion by breast carcinoma cells are still undefined. Increases in the protein, messenger RNA and enzyme activity levels of matrix metalloproteinase (MMP)-9 were observed in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells, and these were blocked by QUE, but not by quercitrin or rutin. A translocation of protein kinase C (PKC)delta from the cytosol to the membrane followed by activation of extracellular signal-regulated kinase (ERK) and c-Jun/activator protein-1 (AP-1) by TPA was demonstrated, and TPA-induced MMP-9 activation and migration were inhibited by the pan PKC inhibitor, GF109203X, the specific PKCdelta inhibitor, rottlerin, an ERK inhibitor (PD98059) and an AP-1 inhibitor (curcumin). Application of QUE significantly suppressed TPA-induced activation of the PKCdelta/ERK/AP-1-signaling cascade. To elucidate the importance of hydroxyl (OH) substitutions to QUE's inhibition of tumor migration, several structurally related flavones of QUE including 3',4'-diOH, 3',4'-diOCH(3), 3,5,7-triOH, 3,4',4'-triOH, 3,3',4'-triOCH(3), luteolin and fisetin were used. Results suggested that OH groups at both C3' and C4' play central roles in QUE's inhibition of TPA-induced MMP-9 activation and migration, and an additional OH at C3, C5 or C7 may increase the inhibitory potency of the 3',4'-diOH flavone against TPA-induced MMP-9 activity and migration. The antitumor invasion and migration effects of breast carcinoma cells induced by QUE with the structure-activity relationship analysis were identified.

PubMed Disclaimer

Publication types

MeSH terms