Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Dec;86(12):1301-14.
doi: 10.1007/s00109-008-0383-6. Epub 2008 Jul 16.

Adult stem cells and their trans-differentiation potential--perspectives and therapeutic applications

Affiliations
Review

Adult stem cells and their trans-differentiation potential--perspectives and therapeutic applications

Sabine Hombach-Klonisch et al. J Mol Med (Berl). 2008 Dec.

Abstract

Stem cells are self-renewing multipotent progenitors with the broadest developmental potential in a given tissue at a given time. Normal stem cells in the adult organism are responsible for renewal and repair of aged or damaged tissue. Adult stem cells are present in virtually all tissues and during most stages of development. In this review, we introduce the reader to the basic information about the field. We describe selected stem cell isolation techniques and stem cell markers for various stem cell populations. These include makers for endothelial progenitor cells (CD146/MCAM/MUC18/S-endo-1, CD34, CD133/prominin, Tie-2, Flk1/KD/VEGFR2), hematopoietic stem cells (CD34, CD117/c-Kit, Sca1), mesenchymal stem cells (CD146/MCAM/MUC18/S-endo-1, STRO-1, Thy-1), neural stem cells (CD133/prominin, nestin, NCAM), mammary stem cells (CD24, CD29, Sca1), and intestinal stem cells (NCAM, CD34, Thy-1, CD117/c-Kit, Flt-3). Separate section provides a concise summary of recent clinical trials involving stem cells directed towards improvement of a damaged myocardium. In the last part of the review, we reflect on the field and on future developments.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Diagram illustrating plasticity of bone-marrow-derived cells
Fig. 2
Fig. 2
Diagram illustrating the different mechanisms of cell fate switching in adult stem cells

References

    1. Filip S, English D, Mokry J. Issues in stem cell plasticity. J Cell Mol Med. 2004;8:572–577. - PMC - PubMed
    1. Hombach-Klonisch S, Paranjothy T, Wiechec E, Pocar P, Mustafa T, Seifert A, Zahl C, Gerlach KL, Biermann K, Steger K, Hoang-Vu C, Schulze-Osthoff K, Los M. Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch Immunol Ther Exp. 2008;56:165–180. - PMC - PubMed
    1. Kindler V. Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions? J Leukoc Biol. 2005;78:836–844. - PubMed
    1. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–512. - PubMed
    1. van Herwaarden AE, Schinkel AH. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci. 2006;27:10–16. - PubMed

Publication types

MeSH terms

Grants and funding