The impact of parasite dispersal on antagonistic host-parasite coevolution
- PMID: 18631211
- DOI: 10.1111/j.1420-9101.2008.01574.x
The impact of parasite dispersal on antagonistic host-parasite coevolution
Abstract
Coevolving populations of hosts and parasites are often subdivided into a set of patches connected by dispersal. Higher relative rates of parasite compared with host dispersal are expected to lead to parasite local adaptation. However, we know of no studies that have considered the implications of higher relative rates of parasite dispersal for other aspects of the coevolutionary process, such as the rate of coevolution and extent of evolutionary escalation of resistance and infectivity traits. We investigated the effect of phage dispersal on coevolution in experimental metapopulations of the bacterium Pseudomonas fluorescens SBW25 and its viral parasite, phage SBW25Phi2. Both the rate of coevolution and the breadth of evolved infectivity and resistance ranges peaked at intermediate rates of parasite dispersal. These results suggest that parasite dispersal can enhance the evolutionary potential of parasites through provision of novel genetic variation, but that high rates of parasite dispersal can impede the evolution of parasites by homogenizing genetic variation between patches, thereby constraining coevolution.
Similar articles
-
The impact of migration from parasite-free patches on antagonistic host-parasite coevolution.Evolution. 2007 May;61(5):1238-43. doi: 10.1111/j.1558-5646.2007.00087.x. Evolution. 2007. PMID: 17492974
-
Relative number of generations of hosts and parasites does not influence parasite local adaptation in coevolving populations of bacteria and phages.J Evol Biol. 2006 Nov;19(6):1956-63. doi: 10.1111/j.1420-9101.2006.01148.x. J Evol Biol. 2006. PMID: 17040393
-
The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.Evolution. 2008 Jan;62(1):1-11. doi: 10.1111/j.1558-5646.2007.00260.x. Epub 2007 Nov 12. Evolution. 2008. PMID: 18005153
-
A synthesis of experimental work on parasite local adaptation.Ecol Lett. 2007 May;10(5):418-34. doi: 10.1111/j.1461-0248.2007.01028.x. Ecol Lett. 2007. PMID: 17498141 Review.
-
Host dispersal as the driver of parasite genetic structure: a paradigm lost?Ecol Lett. 2016 Mar;19(3):336-47. doi: 10.1111/ele.12564. Epub 2016 Jan 5. Ecol Lett. 2016. PMID: 26843399 Review.
Cited by
-
Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis.Proc Biol Sci. 2011 Sep 22;278(1719):2832-9. doi: 10.1098/rspb.2011.0019. Epub 2011 Feb 9. Proc Biol Sci. 2011. PMID: 21307053 Free PMC article.
-
Experimental coevolution: rapid local adaptation by parasites depends on host mating system.Am Nat. 2014 Aug;184 Suppl 1(0 1):S91-100. doi: 10.1086/676930. Epub 2014 Jul 17. Am Nat. 2014. PMID: 25061681 Free PMC article.
-
Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps.Proc Biol Sci. 2013 Jun 12;280(1764):20130937. doi: 10.1098/rspb.2013.0937. Print 2013 Aug 7. Proc Biol Sci. 2013. PMID: 23760864 Free PMC article.
-
Bacteria-phage coevolution with a seed bank.ISME J. 2023 Aug;17(8):1315-1325. doi: 10.1038/s41396-023-01449-2. Epub 2023 Jun 7. ISME J. 2023. PMID: 37286738 Free PMC article.
-
Introduction. Ecological immunology.Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):3-14. doi: 10.1098/rstb.2008.0249. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 18926970 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources