Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;12(4):541-8.
doi: 10.1109/TITB.2007.911308.

A novel and efficient technique for identification and classification of GPCRs

Affiliations

A novel and efficient technique for identification and classification of GPCRs

Ravi Gupta et al. IEEE Trans Inf Technol Biomed. 2008 Jul.

Abstract

G-protein coupled receptors (GPCRs) play a vital role in different biological processes, such as regulation of growth, death, and metabolism of cells. GPCRs are the focus of significant amount of current pharmaceutical research since they interact with more than 50% of prescription drugs. The dipeptide-based support vector machine (SVM) approach is the most accurate technique to identify and classify the GPCRs. However, this approach has two major disadvantages. First, the dimension of dipeptide-based feature vector is equal to 400. The large dimension makes the classification task computationally and memory wise inefficient. Second, it does not consider the biological properties of protein sequence for identification and classification of GPCRs. In this paper, we present a novel-feature-based SVM classification technique. The novel features are derived by applying wavelet-based time series analysis approach on protein sequences. The proposed feature space summarizes the variance information of seven important biological properties of amino acids in a protein sequence. In addition, the dimension of the feature vector for proposed technique is equal to 35. Experiments were performed on GPCRs protein sequences available at GPCRs Database. Our approach achieves an accuracy of 99.9%, 98.06%, 97.78%, and 94.08% for GPCR superfamily, families, subfamilies, and subsubfamilies (amine group), respectively, when evaluated using fivefold cross-validation. Further, an accuracy of 99.8%, 97.26%, and 97.84% was obtained when evaluated on unseen or recall datasets of GPCR superfamily, families, and subfamilies, respectively. Comparison with dipeptide-based SVM technique shows the effectiveness of our approach.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources