AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release
- PMID: 18632893
- PMCID: PMC2544473
- DOI: 10.1152/jn.90548.2008
AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release
Abstract
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evidence suggests glutamatergic regulation of striatal dopamine release is mediated by a diffusible messenger, hydrogen peroxide (H2O2), generated downstream from glutamatergic AMPA receptors (AMPARs). The mechanism of H2O2-dependent inhibition of dopamine release involves activation of ATP-sensitive K+ (KATP) channels. However, the source of modulatory H2O2 is unknown. Here, we used whole cell recording, fluorescence imaging of H2O2, and voltammetric detection of evoked dopamine release in guinea pig striatal slices to examine contributions from medium spiny neurons (MSNs), the principal neurons of striatum, and dopamine axons to AMPAR-dependent H2O2 generation. Imaging studies of H2O2 generation in MSNs provide the first demonstration of AMPAR-dependent H2O2 generation in neurons in the complex brain-cell microenvironment of brain slices. Stimulation-induced increases in H2O2 in MSNs were prevented by GYKI-52466, an AMPAR antagonist, or catalase, an H2O2 metabolizing enzyme, but amplified by mercaptosuccinate (MCS), a glutathione peroxidase inhibitor. By contrast, dopamine release evoked by selective stimulation of dopamine axons was unaffected by GYKI-52466 or MCS, arguing against dopamine axons as a significant source of modulatory H2O2. Together, these findings suggest that glutamatergic regulation of dopamine release via AMPARs is mediated through retrograde signaling by diffusible H2O2 generated in striatal cells, including medium spiny neurons, rather than in dopamine axons.
Figures







Similar articles
-
Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale.ACS Chem Neurosci. 2012 Dec 19;3(12):991-1001. doi: 10.1021/cn300130b. Epub 2012 Nov 8. ACS Chem Neurosci. 2012. PMID: 23259034 Free PMC article. Review.
-
Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.J Neurochem. 2011 Sep;118(5):721-36. doi: 10.1111/j.1471-4159.2011.07358.x. Epub 2011 Aug 4. J Neurochem. 2011. PMID: 21689107 Free PMC article.
-
Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.J Neurosci. 2005 Oct 26;25(43):10029-40. doi: 10.1523/JNEUROSCI.2652-05.2005. J Neurosci. 2005. PMID: 16251452 Free PMC article.
-
Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels.J Neurosci. 2005 Apr 27;25(17):4222-31. doi: 10.1523/JNEUROSCI.4701-04.2005. J Neurosci. 2005. PMID: 15858048 Free PMC article.
-
H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers.Antioxid Redox Signal. 2007 Feb;9(2):219-31. doi: 10.1089/ars.2007.9.219. Antioxid Redox Signal. 2007. PMID: 17115944 Review.
Cited by
-
Quantitation of hydrogen peroxide fluctuations and their modulation of dopamine dynamics in the rat dorsal striatum using fast-scan cyclic voltammetry.ACS Chem Neurosci. 2013 May 15;4(5):782-9. doi: 10.1021/cn4000499. Epub 2013 Apr 24. ACS Chem Neurosci. 2013. PMID: 23556461 Free PMC article.
-
Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale.ACS Chem Neurosci. 2012 Dec 19;3(12):991-1001. doi: 10.1021/cn300130b. Epub 2012 Nov 8. ACS Chem Neurosci. 2012. PMID: 23259034 Free PMC article. Review.
-
Local control of striatal dopamine release.Front Behav Neurosci. 2014 May 23;8:188. doi: 10.3389/fnbeh.2014.00188. eCollection 2014. Front Behav Neurosci. 2014. PMID: 24904339 Free PMC article. Review.
-
SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter.J Neurochem. 2011 Sep;118(5):714-20. doi: 10.1111/j.1471-4159.2011.07357.x. Epub 2011 Jul 21. J Neurochem. 2011. PMID: 21689106 Free PMC article.
-
Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell.Front Behav Neurosci. 2012 Nov 28;6:82. doi: 10.3389/fnbeh.2012.00082. eCollection 2012. Front Behav Neurosci. 2012. PMID: 23226119 Free PMC article.
References
-
- Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375, 1989. - PubMed
-
- Avshalumov MV, Bao L, Patel JC, Rice ME. H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers. Antioxid Redox Signal 9: 219–231, 2007. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources