Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;3(3):245-53.
doi: 10.1017/S1740925X08000136.

The effects of aging, injury and disease on microglial function: a case for cellular senescence

Affiliations

The effects of aging, injury and disease on microglial function: a case for cellular senescence

Kelly R Miller et al. Neuron Glia Biol. 2007 Aug.

Abstract

Neuroinflammation resulting from chronic reactive microgliosis is thought to contribute to age-related neurodegeneration, as well as age-related neurodegenerative diseases, specifically Alzheimer's disease (AD). Support of this theory comes from studies reporting a progressive, age-associated increase in microglia with an activated phenotype. Although the underlying cause(s) of this microglial reactivity is idiopathic, an accepted therapeutic strategy for the treatment of AD is inhibition of microglial activation using anti-inflammatory agents. Although the effectiveness of anti-inflammatory treatment for AD remains equivocal, microglial inhibition is being tested as a potential treatment for additional neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Given the important and necessary functions of microglia in normal brain, careful evaluation of microglial function in the aged brain is a necessary first step in targeting more precise treatment strategies for aging-related neurodegenerative diseases. Studies from our laboratory have shown multiple age-related changes in microglial morphology and function that are suggestive of cellular senescence. In this manuscript, we review current knowledge of microglia in the aging brain and present new, unpublished work that further supports the theory that microglia experience an age-related decline in proliferative function as a result of cellular senescence.

PubMed Disclaimer

LinkOut - more resources