Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;24(4):305-12.
doi: 10.1016/0303-2647(91)90049-q.

Oxygen toxicity and microbial evolution

Affiliations

Oxygen toxicity and microbial evolution

T Bilinski. Biosystems. 1991.

Abstract

It is postulated that the role of oxygen toxicity in the evolution of life strongly depends on the origin of molecular oxygen, due to the strong redox buffering capacity of Precambrian waters containing large amounts of ferrous and manganese cations. The critical selective pressure could be observed only after aerobic photosynthesis had been developed, due to the high local concentration of oxygen in close vicinity of photosynthesizing cells. It is also postulated that early oxygen-evolving organisms excreted a substantial part of this element in the form of hydrogen peroxide. As a consequence of the high reactivity of this compound with ferrous and manganese cations, an important percentage of iron deposits were produced with H2O2 as a major oxidant after the development of aerobic photosynthesis. It is postulated that negatively charged extracellular polymers of simple pro- and eukaryotic organisms function as sacrificial targets of hydroxyl radicals and at the same time as extracellular equivalents of superoxide dismutases, in these two ways protecting cellular membranes against oxidative damage. The role of oxygen toxicity in developing aerobic mechanisms of iron uptake is also discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources