Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;47(35):6550-70.
doi: 10.1002/anie.200704488.

Carbon nanotube gas and vapor sensors

Affiliations

Carbon nanotube gas and vapor sensors

Douglas R Kauffman et al. Angew Chem Int Ed Engl. 2008.

Abstract

Carbon nanotubes have aroused great interest since their discovery in 1991. Because of the vast potential of these materials, researchers from diverse disciplines have come together to further develop our understanding of the fundamental properties governing their electronic structure and susceptibility towards chemical reaction. Carbon nanotubes show extreme sensitivity towards changes in their local chemical environment that stems from the susceptibility of their electronic structure to interacting molecules. This chemical sensitivity has made them ideal candidates for incorporation into the design of chemical sensors. Towards this end, carbon nanotubes have made impressive strides in sensitivity and chemical selectivity to a diverse array of chemical species. Despite the lengthy list of accomplishments, several key challenges must be addressed before carbon nanotubes are capable of competing with state-of-the-art solid-state sensor materials. The development of carbon nanotube based sensors is still in its infancy, but continued progress may lead to their integration into commercially viable sensors of unrivalled sensitivity and vanishingly small dimensions.

PubMed Disclaimer

LinkOut - more resources