Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;77(5 Pt 1):051129.
doi: 10.1103/PhysRevE.77.051129. Epub 2008 May 28.

Generalized Cahn-Hilliard equation for biological applications

Affiliations

Generalized Cahn-Hilliard equation for biological applications

Evgeniy Khain et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May.

Abstract

Recently we considered a stochastic discrete model which describes fronts of cells invading a wound [E. Khain, L. M. Sander, and C. M. Schneider-Mizell, J. Stat. Phys. 128, 209 (2007)]. In the model cells can move, proliferate, and experience cell-cell adhesion. In this work we focus on a continuum description of this phenomenon by means of a generalized Cahn-Hilliard equation (GCH) with a proliferation term. As in the discrete model, there are two interesting regimes. For subcritical adhesion, there are propagating "pulled" fronts, similar to those of the Fisher-Kolmogorov equation. The problem of front velocity selection is examined, and our theoretical predictions are in the good agreement with a numerical solution of the GCH equation. For supercritical adhesion, there is a nontrivial transient behavior, where density profile exhibits a secondary peak. To analyze this regime, we investigated relaxation dynamics for the Cahn-Hilliard equation without proliferation. We found that the relaxation process exhibits self-similar behavior. The results of continuum and discrete models are in good agreement with each other for the different regimes we analyzed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources