Sexual differentiation and the Kiss1 system: hormonal and developmental considerations
- PMID: 18644414
- PMCID: PMC2631352
- DOI: 10.1016/j.peptides.2008.06.014
Sexual differentiation and the Kiss1 system: hormonal and developmental considerations
Abstract
The nervous system (both central and peripheral) is anatomically and physiologically differentiated between the sexes, ranging from gender-based differences in the cerebral cortex to motoneuron number in the spinal cord. Although genetic factors may play a role in the development of some sexually differentiated traits, most identified sex differences in the brain and behavior are produced under the influence of perinatal sex steroid signaling. In many species, the ability to display an estrogen-induced luteinizing hormone (LH) surge is sexually differentiated, yet the specific neural population(s) that allows females but not males to display such estrogen-mediated "positive feedback" has remained elusive. Recently, the Kiss1/kisspeptin system has been implicated in generating the sexually dimorphic circuitry underlying the LH surge. Specifically, Kiss1 gene expression and kisspeptin protein levels in the anteroventral periventricular (AVPV) nucleus of the hypothalamus are sexually differentiated, with females displaying higher levels than males, even under identical hormonal conditions as adults. These findings, in conjunction with accumulating evidence implicating kisspeptins as potent secretagogues of gonadotropin-releasing hormone (GnRH), suggest that the sex-specific display of the LH surge (positive feedback) reflects sexual differentiation of AVPV Kiss1 neurons. In addition, developmental kisspeptin signaling via its receptor GPR54 appears to be critical in males for the proper sexual differentiation of a variety of sexually dimorphic traits, ranging from complex social behavior to specific forebrain and spinal cord neuronal populations. This review discusses the recent data, and their implications, regarding the bi-directional relationship between the Kiss1 system and the process of sexual differentiation.
Figures
References
-
- Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007;53:367–378. - PubMed
-
- Banerjee I, Clayton P. The genetic basis for the timing of human puberty. J Neuroendocrinol. 2007;19:831–838. - PubMed
-
- Barraclough CA. Production of anovulatory, sterile rats by single injections of testosterone propionate. Endocrinology. 1961;68:62–67. - PubMed
-
- Baum MJ, Keverne EB. Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Horm Behav. 2002;41:213–219. - PubMed
-
- Bodo C, Rissman EF. Androgen receptor is essential for sexual differentiation of responses to olfactory cues in mice. Eur J Neurosci. 2007;25:2182–2190. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
