Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels
- PMID: 18647659
- DOI: 10.1016/j.ymben.2008.06.007
Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels
Abstract
Hydrothermal microbiotopes are characterized by the consumption and production of molecular hydrogen. Heterotrophic hyperthermophilic microorganisms (growth T(opt)> or =80 degrees C) actively participate in the production of H(2) in these environments through the fermentation of peptides and carbohydrates. Hyperthermophiles have been shown to approach the theoretical (Thauer) limit of 4 mol of H(2) produced per mole of glucose equivalent consumed, albeit at lower volumetric productivities than observed for mesophilic bacteria, especially enterics and clostridia. Potential advantages for biohydrogen production at elevated temperatures include fewer metabolic byproducts formed, absence of catabolic repression for growth on heterogeneous biomass substrates, and reduced loss of H(2) through conversion to H(2)S and CH(4) by mesophilic consortia containing sulfate reducers and methanogens. To fully exploit the use of these novel microorganisms and their constituent hydrogenases for biohydrogen production, development of versatile genetic systems and improvements in current understanding of electron flux from fermentable substrates to H(2) in hyperthermophiles are needed.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
