Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;70(5):1996-2002.
doi: 10.1152/jappl.1991.70.5.1996.

Shivering onset, metabolic response, and convective heat transfer during cold air exposure

Affiliations

Shivering onset, metabolic response, and convective heat transfer during cold air exposure

P Tikuisis et al. J Appl Physiol (1985). 1991 May.

Abstract

The onset and intensity of shivering of various muscles during cold air exposure are quantified and related to increases in metabolic rate and convective heat loss. Thirteen male subjects resting in a supine position and wearing only shorts were exposed to 10 degrees C air (42% relative humidity and less than 0.4 m/s airflow) for 2 h. Measurements included surface electromyogram recordings at six muscle sites representing the trunk and limb regions of one side of the body, temperatures and heat fluxes at the same contralateral sites, and metabolic rate. The subjects were grouped according to lean (LEAN, n = 6) and average body fat (NORM, n = 7) content. While the rectal temperatures fluctuated slightly but not significantly during exposure, the skin temperature decreased greatly, more at the limb sites than at the trunk sites. Muscles of the trunk region began to shiver sooner and at a higher intensity than those of the limbs. The intensity of shivering and its increase over time of exposure were consistent with the increase in the convective heat transfer coefficient calculated from skin temperatures and heat fluxes. Both the onset of shivering and the magnitude of the increase in metabolic rate due to shivering were higher for the LEAN group than for the NORM group. A regression analysis indicates that, for a given decrease in mean skin temperature, the increase in metabolic rate due to shivering is attenuated by the square root of percent body fat. Thus the LEAN group shivered at higher intensity, resulting in higher increases in metabolic heat production and convective heat loss during cold air exposure than did the NORM group.

PubMed Disclaimer

LinkOut - more resources