Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments
- PMID: 18648886
- PMCID: PMC4065495
- DOI: 10.1007/s11538-008-9323-4
Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments
Abstract
Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants. In this article, we develop mathematical models to describe viral/cellular dynamic interactions in the assay system from which the competitive fitness indices or parameters are defined. In our previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed to be constant (Wu et al. 2006). But this may not be true in some experiments. In addition, dual infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we relax these two assumptions and extend our earlier viral fitness model (Wu et al. 2006). The resulting models then become nonlinear ODE systems for which closed-form solutions are not achievable. In the new model, the viral relative fitness is a function of time since it depends on the target cell concentration. First, we studied the structure identifiability of the nonlinear ODE models. The identifiability analysis showed that all parameters in the proposed models are identifiable from the flow-cytometry-based experimental data that we collected. We then employed a global optimization approach (the differential evolution algorithm) to directly estimate the kinetic parameters as well as the relative fitness index in the nonlinear ODE models using nonlinear least square regression based on the experimental data. Practical identifiability was investigated via Monte Carlo simulations.
Figures


References
-
- Audoly S, D’angio L, Saccomani MP, Cobelli C. Global identifiability of linear compartmental models. IEEE Trans Biomed Eng. 1998;45:36–47. - PubMed
-
- Audoly S, Bellu G, D’Angio L, Saccomani MP, Cobelli C. Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng. 2001;48:55–65. - PubMed
Publication types
MeSH terms
Grants and funding
- T32 ES007271/ES/NIEHS NIH HHS/United States
- 2T32 ES007271/ES/NIEHS NIH HHS/United States
- N01 AI050020/AI/NIAID NIH HHS/United States
- U01 AI027658/AI/NIAID NIH HHS/United States
- AI50020/AI/NIAID NIH HHS/United States
- AI065217/AI/NIAID NIH HHS/United States
- AI27658/AI/NIAID NIH HHS/United States
- AI055290/AI/NIAID NIH HHS/United States
- R01 AI055290/AI/NIAID NIH HHS/United States
- R01 AI065217/AI/NIAID NIH HHS/United States
- R01 AI041387/AI/NIAID NIH HHS/United States
- P30 AI078498/AI/NIAID NIH HHS/United States
- R01 AI052765/AI/NIAID NIH HHS/United States
- AI052765/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources