Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;2(5):312-7.
doi: 10.1038/nnano.2007.110.

Spin qubits with electrically gated polyoxometalate molecules

Affiliations

Spin qubits with electrically gated polyoxometalate molecules

Jörg Lehmann et al. Nat Nanotechnol. 2007 May.

Abstract

Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with properties that can be tailored, but so far, there have been no molecules in which the spin state can be controlled by an electrical gate. Here we propose to use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins with S = 1/2 can be coupled through the electrons of the central core. Through electrical manipulation of the molecular redox potential, the charge of the core can be changed. With this setup, two-qubit gates and qubit readout can be implemented.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources