Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
- PMID: 18654311
- DOI: 10.1038/nnano.2007.151
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
Abstract
The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.
Similar articles
-
Fully transparent thin-film transistor devices based on SnO2 nanowires.Nano Lett. 2007 Aug;7(8):2463-9. doi: 10.1021/nl0712217. Epub 2007 Jun 27. Nano Lett. 2007. PMID: 17595151
-
Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry.ACS Nano. 2010 Jun 22;4(6):2994-8. doi: 10.1021/nn1006094. ACS Nano. 2010. PMID: 20450163
-
High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel.Adv Mater. 2010 Jun 4;22(21):2333-7. doi: 10.1002/adma.200903761. Adv Mater. 2010. PMID: 20491089 No abstract available.
-
Graphene synthesis: relationship to applications.Nanoscale. 2013 Jan 7;5(1):38-51. doi: 10.1039/c2nr32629a. Epub 2012 Nov 19. Nanoscale. 2013. PMID: 23160190 Review.
-
One-dimensional ZnO nanostructures.J Nanosci Nanotechnol. 2012 Jun;12(6):4409-57. doi: 10.1166/jnn.2012.6486. J Nanosci Nanotechnol. 2012. PMID: 22905484 Review.
Cited by
-
Al2O3/HfO2 Nanolaminate Dielectric Boosting IGZO-Based Flexible Thin-Film Transistors.Nanomicro Lett. 2022 Sep 27;14(1):195. doi: 10.1007/s40820-022-00929-y. Nanomicro Lett. 2022. PMID: 36165917 Free PMC article.
-
Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing.Nat Mater. 2011 May;10(5):382-8. doi: 10.1038/nmat3011. Epub 2011 Apr 17. Nat Mater. 2011. PMID: 21499311
-
Vertically stacked skin-like active-matrix display with ultrahigh aperture ratio.Light Sci Appl. 2024 Jul 26;13(1):177. doi: 10.1038/s41377-024-01524-z. Light Sci Appl. 2024. PMID: 39060257 Free PMC article.
-
Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes.Nanomaterials (Basel). 2017 Nov 28;7(12):418. doi: 10.3390/nano7120418. Nanomaterials (Basel). 2017. PMID: 29182551 Free PMC article.
-
Metal oxides for optoelectronic applications.Nat Mater. 2016 Apr;15(4):383-96. doi: 10.1038/nmat4599. Nat Mater. 2016. PMID: 27005918 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources