Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2008;47(7):1438-43.
doi: 10.1080/02841860802282778.

Treatment of lung cancer using volumetric modulated arc therapy and image guidance: a case study

Affiliations
Case Reports

Treatment of lung cancer using volumetric modulated arc therapy and image guidance: a case study

James L Bedford et al. Acta Oncol. 2008.

Abstract

Background: Volumetric modulated arc therapy (VMAT) is a radiotherapy technique in which the gantry rotates while the beam is on. Gantry speed, multileaf collimator (MLC) leaf position and dose rate vary continuously during the irradiation. For optimum results, this type of treatment should be subject to image guidance. The application of VMAT and image guidance to the treatment of a lung cancer patient is described.

Material and methods: In-house software AutoBeam was developed to facilitate treatment planning for VMAT beams. The algorithm consisted of a fluence optimisation using the iterative least-squares technique, a segmentation and then a direct-aperture optimisation. A dose of 50 Gy in 25 fractions was planned, using a single arc with 35 control points at 10 degrees intervals. The resulting plan was transferred to a commercial treatment planning system for final calculation. The plan was verified using a 0.6 cm(3) ionisation chamber and film in a rectangular phantom. The patient was treated supine on a customised lung board and imaged daily with cone-beam CT for the first three days then weekly thereafter.

Results: The VMAT plan provided slightly improved coverage of the planning target volume (PTV) and slightly lower volume of lung irradiated to 20 Gy (V(20)) than a three-field conformal plan (PTV minimum dose 85.0 Gy vs. 81.8 Gy and lung V(20) 31.5% vs. 34.8%). The difference between the measured and planned dose was -1.1% (measured dose lower) and 97.6% of the film passed a gamma test of 3% and 3mm. The VMAT treatment required 90 s for delivery of a single fraction of 2 Gy instead of 180 s total treatment time for the conformal plan.

Conclusion: VMAT provides a quality dose distribution with a short treatment time as shown in an example of a lung tumour. The technique should allow for more efficient delivery of high dose treatments, such as used for hypofractionated radiotherapy of small volume lung tumours, and the technique may also be used in conjunction with Active Breathing Control, where fewer breath holds will be required.

PubMed Disclaimer

Publication types

LinkOut - more resources