Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 15;29(2):261-71.
doi: 10.1016/j.immuni.2008.05.014. Epub 2008 Jul 24.

Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut

Affiliations
Free article

Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut

Masayuki Tsuji et al. Immunity. .
Free article

Abstract

Immunoglobulin A (IgA) is generated in the gut by both T cell-dependent and T cell-independent processes. The sites and the mechanisms for T cell-independent IgA synthesis remain elusive. Here we show that isolated lymphoid follicles (ILFs) were sites where induction of activation-induced cytidine deaminase (AID) and IgA class switching of B cells took place in the absence of T cells. We also show that formation of ILFs was regulated by interactions between lymphoid tissue-inducer cells expressing the nuclear receptor ROR gamma t (ROR gamma t(+)LTi cells) and stromal cells (SCs). Activation of SCs by ROR gamma t(+)LTi cells through lymphotoxin (LT)-beta receptor (LT beta R) and simultaneously by bacteria through TLRs induced recruitment of dendritic cells (DCs) and B cells and formation of ILFs. These findings provide insight into the crosstalk between bacteria, ROR gamma t(+)LTi cells, SCs, DCs, and B cells required for ILF formation and establish a critical role of ILFs in T cell-independent IgA synthesis in gut.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources