Effects of structural deformations on optical properties of tetrabenzoporphyrins: free-bases and Pd complexes
- PMID: 18665576
- PMCID: PMC2678055
- DOI: 10.1021/jp8043626
Effects of structural deformations on optical properties of tetrabenzoporphyrins: free-bases and Pd complexes
Abstract
A recently developed method of synthesis of pi-extended porphyrins made it possible to prepare a series of tetrabenzoporphyrins (TBP) with different numbers of meso-aryl substituents. The photophysical parameters of free-bases and Pd complexes of meso-unsubstituted TBP's, 5,15-diaryl-TBP's (Ar2TBP's) and 5,10,15,20-tetraaryl-TBP's (Ar4TBP's) were measured. For comparison, similarly meso-arylsubstituted porphyrins fused with nonaromatic cyclohexeno-rings, i.e. Ar(n)-tetracyclohexenoporphyrins (Ar(n)TCHP's, n = 0, 2, 4), were also synthesized and studied. Structural information was obtained by ab initio (DFT) calculations and X-ray crystallography. It was found that: 1) Free-base Ar4TBP's are strongly distorted out-of-plane (saddled), possess broadened, red-shifted spectra, short excited-state lifetimes and low fluorescence quantum yields (tau(fl) = 2-3 ns, phi(fl) = 0.02-0.03). These features are characteristic of other nonplanar free-base porphyrins, including Ar4TCHP's. 2) Ar2TBP free-bases possess completely planar geometries, although with significant in-plane deformations. These deformations have practically no effect on the singlet excited-state properties of Ar2TBP's as compared to planar meso-unsubstituted TBP's. Both types of porphyrins retain strong fluorescence (tau(fl) = 10-12 ns, phi(fl) = 0.3-0.4), and their radiative rate constants (k(r)) are 3-4 times higher than those of planar H2TCHP's. 3) Nonplanar deformations dramatically enhance nonradiative decay of triplet states of regular Pd porphyrins. For example, planar PdTCHP phosphoresces with high quantum yield (phi(phos) = 0.45, tau(phos) = 1118 micros), while saddled PdPh4TCHP is practically nonemissive. In contrast, both ruffled and saddled PdAr(n)TBP's retain strong phosphorescence at ambient temperatures (PdPh2TBP: tau(phos) = 496 micros, phi(phos) = 0.15; PdPh4TBP: tau(phos) = 258 micros, phi(phos) = 0.08). It appears that pi-extension is capable of counterbalancing deleterious effects of nonplanar deformations on triplet emissivity of Pd porphyrins.
Figures
References
-
- Ehrenberg B, Malik Z, Nitzan Y, Ladan H, Johnson FM, Hemmi G, Sessler JL. Lasers Med. Sci. 1993;8:197.
- Gross E, Ehrenberg B, Johnson FM. Photochem. Photobiol. 1993;57:808. - PubMed
- Lavi A, Johnson FM, Ehrenberg B. Chem. Phys. Lett. 1994;231:144.
- Yasuike M, Yamaoka T, Ohno O, Sakuragi M, Ichimura K. Inorg. Chim. Acta. 1991;184:191.
- Friedberg JS, Skema C, Baum ED, Burdick J, Vinogradov SA, Wilson DF, Horan AD, Nachamkin I. J. Antimicrob. Chemother. 2001;48:105. - PubMed
- Kepczynski M, Pandian RP, Smith KM, Ehrenberg B. Photochem. Photobiol. 2002;76:127. - PubMed
- Ongayi O, Gottumukkala V, Fronczek FR, Vicente MGH. Bioorg. Med. Chem. Lett. 2005;15:1665. - PubMed
- Gottumukkala V, Ongayi O, Baker DG, Lomax LG, Vicente MGH. Bioorg. Med. Chem. 2006;14:1871. - PubMed
-
- Vinogradov SA, Wilson DF. J. Chem. Soc. Perkin Trans. 1995;2:103–111.
- Vinogradov SA, Lo L-W, Jenkins WT, Evans SM, Koch C, Wilson DF. Biophys. J. 1996;70:1609. - PMC - PubMed
- Finikova OS, Galkin A, Rozhkov VV, Cordero M, Hägerhäll C, Vinogradov SA. J. Am. Chem. Soc. 2003;125:4882. - PubMed
- Rietveld IB, Kim E, Vinogradov SA. Tetrahedron. 2003;59:3821.
- Apreleva SV, Wilson DF, Vinogradov SA. Appl. Opt. 2006;45:8547. - PMC - PubMed
- Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. J. Appl. Physiol. 2006;101:1648. - PubMed
- Finikova OS, Troxler T, Senes A, DeGrado WF, Hochstrasser RM, Vinogradov SA. J. Phys. Chem. A. 2007;111:6977. - PMC - PubMed
- Mik EG, Johannes T, Ince C. Amer J. Physiol. Renal Physiol. 2008;294:F676. - PubMed
-
- Baluschev S, Yakutkin V, Miteva T, Avlasevich Y, Chernov S, Aleshchenkov S, Nelles G, Cheprakov A, Yasuda A, Mullen K, Wegner G. Angew. Chem., Int. Ed. 2007;46:7693. - PubMed
- Baluschev S, Yakutkin V, Wegner G, Miteva T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. App. Phys. Lett. 2007;90:181103.
- Baluschev S, Yakutkin V, Miteva T, Wegner G, Roberts T, Nelles G, Yasuda A, Chernov S, Aleshchenkov S, Cheprakov A. New J. Phys. 2008;10:1.
-
- Hanack M, Zipplies T. J. Am. Chem. Soc. 1985;107:6127.
- Guha S, Kang K, Porter P, Roach JF, Remy DE, Aranda FJ, Rao DVGLN. Opt. Lett. 1992;17:264. - PubMed
- Chen PL, Tomov IV, Dvornikov AS, Nakashima M, Roach JF, Alabran DM, Rentzepis PM. J. Phys. Chem. 1996;100:17507.
- Brunel M, Chaput F, Vinogradov SA, Campagne B, Canva M, Boilot JP, Brun A. Chem. Phys. 1997;218:301.
- Plagemann B, Renge I, Renn A, Wild UP. J. Phys. Chem. A. 1998;102:1725.
- Borek C, Hanson K, Djurovich PI, Thompson ME, Aznavour K, Bau R, Sun YR, Forrest SR, Brooks J, Michalski L, Brown J. Angew. Chem., Int. Ed. 2007;46:1109. - PubMed
-
- Phillips TE, Hoffman BM. J. Am. Chem. Soc. 1977;99:7734.
- Martinsen J, Pace LJ, Phillips TE, Hoffman BM, Ibers JA. J. Am. Chem. Soc. 1982;104:83.
- Liou K, Ogawa MY, Newcomb TP, Quirion G, Lee MH, Poirier M, Halperin WP, Hoffman BM, Ibers JA. Inorg. Chem. 1989;28:3889.
- Liou KY, Newcomb TP, Heagy MD, Thompson JA, Heuer WB, Musselman RL, Jacobsen CS, Hoffman BM, Ibers JA. Inorg. Chem. 1992;31:4517.
- Kobayashi N, Nevin WA, Mizunuma S, Awaji H, Yamaguchi M. Chem. Phys. Lett. 1993;205:51.
- Murata K, Liou KK, Thompson JA, McGhee EM, Rende DE, Ellis DE, Musselman RL, Hoffman BM, Ibers JA. Inorg. Chem. 1997;36:3363. - PubMed
- Aramaki S, Sakai Y, Ono N. Appl. Phys. Lett. 2004;84:2085–2087.
- Shea PB, Johnson AR, Ono N, Kanicki J. IEEE Trans. Electron Devices. 2005;52:1497.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
