Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 30:8:59.
doi: 10.1186/1472-6750-8-59.

Detection of N-acyl homoserine lactones using a traI-luxCDABE-based biosensor as a high-throughput screening tool

Affiliations

Detection of N-acyl homoserine lactones using a traI-luxCDABE-based biosensor as a high-throughput screening tool

Steve P Bernier et al. BMC Biotechnol. .

Abstract

Background: Bacteria use N-acyl homoserine lactone (AHL) molecules to regulate the expression of genes in a density-dependent manner. Several biosensors have been developed and engineered to detect the presence of all types of AHLs.

Results: In this study, we describe the usefulness of a traI-luxCDABE-based biosensor to quickly detect AHLs from previously characterized mutants of Burkholderia cenocepacia and Pseudomonas aeruginosa in both liquid and soft-agar co-culture assays in a high-throughput manner. The technique uses a co-culture system where the strain producing the AHLs is grown simultaneously with the reporter strain. Use of this assay in liquid co-culture allows the measurement of AHL activity in real time over growth. We tested this assay with Burkholderia cenocepacia and Pseudomonas aeruginosa but it should be applicable to a broad range of gram negative species that produce AHLs.

Conclusion: The co-culture assays described enable the detection of AHL production in both P. aeruginosa and B. cenocepacia and should be applicable to AHL analysis in other bacterial species. The high-throughput adaptation of the liquid co-culture assay could facilitate the screening of large libraries for the identification of mutants or compounds that block the synthesis or activity of AHLs.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Detection of AHL using the A. tumefaciens A136 (pCF218) (pMV26) as biosensor in liquid co-culture assay. Detection and temporal expression of AHL in liquid co-culture assay for B. cenocepacia (A) and P. aeruginosa strains (B). Values shown are the mean ± standard deviation of at least four replicates.
Figure 2
Figure 2
Detection of AHLs using the A. tumefaciens A136 (pCF218) (pMV26) as biosensor on soft agar co-culture assay. Detection of AHLs in a soft agar co-culture assay for B. cenocepacia (A) and P. aeruginosa strains (B). Panel A: 1, K56-2cepI cciIb; 2, K56-2cciI; 3, K56-2cepR cciIR; 4, K56-2cciIR; 5, K56-dI2; 6, K56-2cciR; 7, K56-I2; 8, K56-R2; 9, K56-2. Panel B: 1, PAO1rhlI lasI; 2, PAO1rhlR; 3, PAO1lasI; 4, PAO1rhlI; 5, PAO1lasR; 6, PAO1.
Figure 3
Figure 3
Comparison of the detection of AHLs using the A. tumefaciens A136 (pCF218) (pMV26) as biosensor with different microtiter plate formats. Temporal expression of AHL in liquid co-culture assay by B. cenocepacia strains in 96- (A) and 384-well formats (B). Values shown are the mean ± standard deviation of at least 3 replicates.

Similar articles

Cited by

References

    1. Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176:269–275. - PMC - PubMed
    1. Engebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A. 1984;81:4154–4158. doi: 10.1073/pnas.81.13.4154. - DOI - PMC - PubMed
    1. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25:365–404. doi: 10.1111/j.1574-6976.2001.tb00583.x. - DOI - PubMed
    1. Steindler L, Venturi V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett. 2007;266:1–9. doi: 10.1111/j.1574-6968.2006.00501.x. - DOI - PubMed
    1. Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology. 2003;149:3649–3658. doi: 10.1099/mic.0.26540-0. - DOI - PubMed

Publication types

Substances

LinkOut - more resources