Global organization of replication time zones of the mouse genome
- PMID: 18669478
- PMCID: PMC2556267
- DOI: 10.1101/gr.079566.108
Global organization of replication time zones of the mouse genome
Abstract
The division of genomes into distinct replication time zones has long been established. However, an in-depth understanding of their organization and their relationship to transcription is incomplete. Taking advantage of a novel synchronization method ("baby machine") and of genomic DNA microarrays, we have, for the first time, mapped replication times of the entire mouse genome at a high temporal resolution. Our data revealed that although most of the genome has a distinct time of replication either early, middle, or late S phase, a significant portion of the genome is replicated asynchronously. Analysis of the replication map revealed the genomic scale organization of the replication time zones. We found that the genomic regions between early and late replication time zones often consist of extremely large replicons. Analysis of the relationship between replication and transcription revealed that early replication is frequently correlated with the transcription potential of a gene and not necessarily with its actual transcriptional activity. These findings, along with the strong conservation found between replication timing in human and mouse genomes, emphasize the importance of replication timing in transcription regulation.
Figures






Similar articles
-
Isochores and replication time zones: a perfect match.Cytogenet Genome Res. 2007;116(3):167-72. doi: 10.1159/000098182. Cytogenet Genome Res. 2007. PMID: 17317955
-
Genomic methods for measuring DNA replication dynamics.Chromosome Res. 2020 Mar;28(1):49-67. doi: 10.1007/s10577-019-09624-y. Epub 2019 Dec 17. Chromosome Res. 2020. PMID: 31848781 Free PMC article. Review.
-
Replication timing of human chromosome 6.Cell Cycle. 2005 Jan;4(1):172-6. doi: 10.4161/cc.4.1.1350. Epub 2005 Jan 5. Cell Cycle. 2005. PMID: 15611667
-
Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture.PLoS Genet. 2010 Jul 1;6(7):e1001011. doi: 10.1371/journal.pgen.1001011. PLoS Genet. 2010. PMID: 20617169 Free PMC article.
-
DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability.Semin Cancer Biol. 2013 Apr;23(2):80-9. doi: 10.1016/j.semcancer.2013.01.001. Epub 2013 Jan 14. Semin Cancer Biol. 2013. PMID: 23327985 Free PMC article. Review.
Cited by
-
Bleomycin-induced γH2AX foci map preferentially to replicating domains in CHO9 interphase nuclei.Chromosome Res. 2014 Dec;22(4):463-81. doi: 10.1007/s10577-014-9433-9. Epub 2014 Jul 18. Chromosome Res. 2014. PMID: 25035135
-
APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context.Genome Res. 2017 Feb;27(2):175-184. doi: 10.1101/gr.210336.116. Epub 2016 Dec 9. Genome Res. 2017. PMID: 27940951 Free PMC article.
-
Polymerase-usage sequencing identifies initiation zones with less bias across S phase in mouse embryonic stem cells.J Biochem. 2025 Mar 4;177(3):213-223. doi: 10.1093/jb/mvae097. J Biochem. 2025. PMID: 39745849 Free PMC article.
-
USF binding sequences from the HS4 insulator element impose early replication timing on a vertebrate replicator.PLoS Biol. 2012;10(3):e1001277. doi: 10.1371/journal.pbio.1001277. Epub 2012 Mar 6. PLoS Biol. 2012. PMID: 22412349 Free PMC article.
-
Telomere-to-telomere human DNA replication timing profiles.Sci Rep. 2022 Jun 10;12(1):9560. doi: 10.1038/s41598-022-13638-8. Sci Rep. 2022. PMID: 35688856 Free PMC article.
References
-
- Azuara V., Brown K.E., Williams R.R., Webb N., Dillon N., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Brown K.E., Williams R.R., Webb N., Dillon N., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Williams R.R., Webb N., Dillon N., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Webb N., Dillon N., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Dillon N., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Festenstein R., Buckle V., Merkenschlager M., Fisher A.G., Buckle V., Merkenschlager M., Fisher A.G., Merkenschlager M., Fisher A.G., Fisher A.G. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat. Cell Biol. 2003;5:668–674. - PubMed
-
- Azuara V., Perry P., Sauer S., Spivakov M., Jorgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Perry P., Sauer S., Spivakov M., Jorgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Sauer S., Spivakov M., Jorgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Spivakov M., Jorgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Jorgensen H.F., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., John R.M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Gouti M., Casanova M., Warnes G., Merkenschlager M., Casanova M., Warnes G., Merkenschlager M., Warnes G., Merkenschlager M., Merkenschlager M., et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 2006;8:532–538. - PubMed
-
- Berezney R., Dubey D.D., Huberman J.A., Dubey D.D., Huberman J.A., Huberman J.A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 2000;108:471–484. - PubMed
-
- Bierne H., Michel B., Michel B. When replication forks stop. Mol. Microbiol. 1994;13:17–23. - PubMed
-
- Braunstein J.D., Schulze D., DelGiudice T., Furst A., Schildkraut C.L., Schulze D., DelGiudice T., Furst A., Schildkraut C.L., DelGiudice T., Furst A., Schildkraut C.L., Furst A., Schildkraut C.L., Schildkraut C.L. The temporal order of replication of murine immunoglobulin heavy chain constant region sequences corresponds to their linear order in the genome. Nucleic Acids Res. 1982;10:6887–6902. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases