Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Aug;128(8):1119-31.
doi: 10.1248/yakushi.128.1119.

[Chemical studies on plant polyphenols and formation of black tea polyphenols]

[Article in Japanese]
Affiliations
Free article
Review

[Chemical studies on plant polyphenols and formation of black tea polyphenols]

[Article in Japanese]
Takashi Tanaka. Yakugaku Zasshi. 2008 Aug.
Free article

Abstract

Recent biological and pharmacological studies strongly suggested that plant polyphenols in foods, beverages and crude drugs have various health benefits. However, still there are chemically uncharacterized polyphenols, especially those with large molecular weights. The typical example is black tea polyphenols. Four tea catechins of fresh tea leaves are enzymatically oxidized in tea fermentation process of black tea manufacture to give a complex mixture of the oxidation products. Despite many efforts since 1950's, major part of the black tea polyphenols has not been clarified yet. We have investigated the oxidation mechanism of each catechin by employing a newly developed in vitro model fermentation system. The oxidation was initiated by enzymatic dehydrogenation of catechins, and subsequent intermolecular quinone-phenol coupling reactions followed by cascade-type degradation of the unstable products resulted in the formation of complex black tea polyphenols. Besides black tea polyphenols, this review introduces the chemistry of insolubilization of persimmon proanthocyanidins, wood polyphenols in connection with whisky polyphenols, and co-polymerization of cinnamaldehyde and proanthocyanidins in cinnamon bark.

PubMed Disclaimer