Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 1;24(4):1037-41.
doi: 10.1016/j.bios.2008.06.028. Epub 2008 Jun 28.

The electrochemical modification of clenbuterol for biosensors of dopamine, norepinephrine, adrenalin, ascorbic acid and uric acid at paraffin-impregnated graphite electrode

Affiliations

The electrochemical modification of clenbuterol for biosensors of dopamine, norepinephrine, adrenalin, ascorbic acid and uric acid at paraffin-impregnated graphite electrode

Guan-Ping Jin et al. Biosens Bioelectron. .

Abstract

The electrochemical modification of clenbuterol (CLB) was studied at paraffin-impregnated graphite electrode (WGE) in two potential ranges of 0.0-1.6V and -1.2 to 1.2V. Various methods including X-ray photoelectron spectroscopy (XPS), UV-spectroelectrochemistry, infrared (IR) spectra and electrochemical techniques have been used to characterizing the modification. Clenbuterol can be modified at the electrode surface by carbon-nitrogen linkage or carbon-carbon linkage in 0.0-1.6V or -1.2 to 1.2V, respectively. The electrochemical behaviors of dopamine (DA), norepinephrine (NE), adrenalin (EP), ascorbic acid (AA) and uric acid (UA) were studied at clenbuterol-modified paraffin-impregnated graphite electrode (CLB/WGE), and it was found that all these compounds could be detected successfully.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources