Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;49(12):5386-91.
doi: 10.1167/iovs.07-1435. Epub 2008 Aug 1.

Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT

Affiliations
Free article

Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT

Marcel N Menke et al. Invest Ophthalmol Vis Sci. 2008 Dec.
Free article

Abstract

Purpose: Conventional time-domain optical coherence tomography (OCT) has been shown to provide reproducible retinal nerve fiber layer (RNFL) measurements. Recently, high-speed, high-resolution Fourier-domain 3D-OCT has been introduced to improve OCT quality. It can provide 6-mm(2) high-density scans to provide RNFL thickness measurements. The purpose of this study was to test the reproducibility of 3D-OCT RNFL thickness measurements in healthy volunteers.

Methods: Thirty-eight eyes were included in the study. High-density 6-mm(2) 3D scans were registered by two independent operators. RNFL thickness was calculated for eight areas corresponding to the ETDRS areas and for two ring areas. The ETDRS grid was centered on the optic disc. Intraclass correlation coefficients (ICC) and coefficients of variation (COV) were calculated. Interobserver reproducibility was visualized by using Bland-Altman analysis.

Results: Intrasession reproducibility was good with a mean ICC of 0.90. The mean COV for operator 1 and 2 was 4.2% and 4%, respectively (range, 1.9%-6.7%). Highest reproducibility was found for the two ring areas and the superior and inferior quadrants. Mean differences in RNFL thickness measurements for ring 1 and 2 between operator 1 and 2 were 0.9 microm (limits of agreement, -11.4 to +9.6 microm) and 0.1 microm (limits of agreement -4.1 to +3.9 microm), respectively.

Conclusions: 3D-OCT RNFL thickness measurements in healthy volunteers showed good intra- and interobserver reproducibility. 3D-OCT provides more RNFL thickness information compared to conventional time-domain OCT measurements and may be useful for the management of glaucoma and other optic neuropathies.

PubMed Disclaimer