Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;57(11):3136-44.
doi: 10.2337/db07-1731. Epub 2008 Aug 4.

Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes

Affiliations

Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes

Kyle J Gaulton et al. Diabetes. 2008 Nov.

Abstract

Objective: Type 2 diabetes is a common complex disorder with environmental and genetic components. We used a candidate gene-based approach to identify single nucleotide polymorphism (SNP) variants in 222 candidate genes that influence susceptibility to type 2 diabetes.

Research design and methods: In a case-control study of 1,161 type 2 diabetic subjects and 1,174 control Finns who are normal glucose tolerant, we genotyped 3,531 tagSNPs and annotation-based SNPs and imputed an additional 7,498 SNPs, providing 99.9% coverage of common HapMap variants in the 222 candidate genes. Selected SNPs were genotyped in an additional 1,211 type 2 diabetic case subjects and 1,259 control subjects who are normal glucose tolerant, also from Finland.

Results: Using SNP- and gene-based analysis methods, we replicated previously reported SNP-type 2 diabetes associations in PPARG, KCNJ11, and SLC2A2; identified significant SNPs in genes with previously reported associations (ENPP1 [rs2021966, P = 0.00026] and NRF1 [rs1882095, P = 0.00096]); and implicated novel genes, including RAPGEF1 (rs4740283, P = 0.00013) and TP53 (rs1042522, Arg72Pro, P = 0.00086), in type 2 diabetes susceptibility.

Conclusions: Our study provides an effective gene-based approach to association study design and analysis. One or more of the newly implicated genes may contribute to type 2 diabetes pathogenesis. Analysis of additional samples will be necessary to determine their effect on susceptibility.

PubMed Disclaimer

Comment in

References

    1. Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, Stengård J, Kesäniemi YA: Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35: 1060–1067, 1992 - PubMed
    1. Frayling TM: Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 8: 657–662, 2007 - PubMed
    1. Freeman H, Cox RD: Type-2 diabetes: a cocktail of genetic discovery. Hum Mol Genet 15: R202–R209, 2006 - PubMed
    1. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O'Rahilly S, Wareham NJ: Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1: E20, 2003 - PMC - PubMed
    1. Willer CJ, Bonnycastle LL, Conneely KN, Duren WL, Jackson AU, Scott LJ, Narisu N, Chines PS, Skol A, Stringham HM, Petrie J, Erdos MR, Swift AJ, Enloe ST, Sprau AG, Smith E, Tong M, Doheny KF, Pugh EW, Watanabe RM, Buchanan TA, Valle TT, Bergman RN, Tuomilehto J, Mohlke KL, Collins FS, Boehnke M: Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. Diabetes 56: 256–264, 2007 - PubMed

Publication types

Substances