Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;46(9):3178-81.
doi: 10.1016/j.fct.2008.07.004. Epub 2008 Jul 17.

Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity

Affiliations

Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity

T A Ajith et al. Food Chem Toxicol. 2008 Sep.

Abstract

Oxidative stress due to abnormal production of reactive oxygen species has been implicated in the nephrotoxicity induced by a commonly used anticancer antibiotic doxorubicin (DXN). The nephroprotective effect of aqueous ethanol extract of Zingiber officinale (200 and 400mg/kg, p.o) was evaluated against doxorubicin-induced (15mg/kg, i.p) acute renal damage in rat. Serum urea and creatinine levels were evaluated as the markers of renal failure. Renal antioxidant status such as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and level of reduced glutathione (GSH) were determined. Level of lipid peroxidation as equivalents of malondialdehyde (MDA), and glutathione-S-transferase (GST) activity were determined in the kidneys. Serum urea and creatinine levels were reduced in the Z. officinale (200 and 400mg/kg, p.o) plus DXN treated groups. The renal antioxidant enzymes activities such as SOD, CAT GPx, levels of GSH and GST activity were restored and that of MDA declined significantly (p<0.001) in the Z. officinale (400mg/kg) plus DXN treated group. The nephroprotection is mediated by preventing the DXN-induced decline of renal antioxidant status, and also by increasing the activity of GST.

PubMed Disclaimer

MeSH terms