Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;22(11):3908-18.
doi: 10.1096/fj.08-112896. Epub 2008 Aug 5.

Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals

Affiliations

Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals

Young-Woock Noh et al. FASEB J. 2008 Nov.

Abstract

Effective tracking of immunotherapeutic cells is essential for monitoring the migration of injected cells to the target tissue. Here we report the use of near-infrared (NIR) -emitting fluorescent semiconductor nanocrystals, called quantum dots (QDs), for noninvasive in vivo tracking of dendritic cell (DC) migration into lymph nodes. The effect of QDs on DC viability and maturation was systematically investigated using MTT assays and FACS analysis. We found that the labeling of DCs with QDs had no effect on DC phenotype or maturation potential. Cytokine and migration assays revealed that there were no significant changes in either cytokine production or chemokine-dependent migration of QD-labeled DCs relative to unlabeled cells; in both labeled and unlabeled cells, cytokine production and migratory capacity was increased by stimulation with lipopolysaccharide. Furthermore, QDs did not influence allogenic naive T cell activation or uptake of exogenous antigens. Notably, we also demonstrated that it was possible to track QD-labeled DCs injected into the footpad into popliteal and inguinal lymph nodes using NIR fluorescence. Taken together, our protocols establish the potential of noninvasive in vivo imaging of NIR-emitting QDs for tracking immunotherapeutic cells.

PubMed Disclaimer

LinkOut - more resources