Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 6:4:34.
doi: 10.1186/1744-9081-4-34.

Brain stimulation modulates driving behavior

Affiliations

Brain stimulation modulates driving behavior

Gian Beeli et al. Behav Brain Funct. .

Abstract

Background: Driving a car is a complex task requiring coordinated functioning of distributed brain regions. Controlled and safe driving depends on the integrity of the dorsolateral prefrontal cortex (DLPFC), a brain region, which has been shown to mature in late adolescence.

Methods: In this study, driving performance of twenty-four male participants was tested in a high-end driving simulator before and after the application of transcranial direct current stimulation (tDCS) for 15 minutes over the left or right DLPFC.

Results: We show that external modulation of both, the left and the right, DLPFC directly influences driving behavior. Excitation of the DLPFC (by applying anodal tDCS) leads to a more careful driving style in virtual scenarios without the participants noticing changes in their behavior.

Conclusion: This study is one of the first to prove that external stimulation of a specific brain area can influence a multi-part behavior in a very complex and everyday-life situation, therefore breaking new ground for therapy at a neural level.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Differences between anodal and cathodal tDCS. Depicted are differences and standard errors (SE) between pre- and post-stimulation driving behavior (POST minus PRE) pooled across the two experimental groups (left DLPFC and right DLPFC stimulation). The p-values indicate the significances of the 'time × condition' interactions for each of the four behavioral variables.
Figure 2
Figure 2
Left- vs. right-hemispheric DLPFC stimulation. Depicted are performance changes from pre- to post-stimulation measurements in percent ((POST*100)/PRE) and standard errors (SE) separately for two experimental groups (left DLPFC and right DLPFC stimulation).

References

    1. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123 ( Pt 11):2189–2202. doi: 10.1093/brain/123.11.2189. - DOI - PubMed
    1. Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T. Decision-making processes following damage to the prefrontal cortex. Brain. 2002;125:624–639. doi: 10.1093/brain/awf049. - DOI - PubMed
    1. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology. 1999;20:322–339. doi: 10.1016/S0893-133X(98)00091-8. - DOI - PubMed
    1. Clark L, Manes F, Antoun N, Sahakian BJ, Robbins TW. The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia. 2003;41:1474–1483. doi: 10.1016/S0028-3932(03)00081-2. - DOI - PubMed
    1. Knoch D, Gianotti LR, Pascual-Leone A, Treyer V, Regard M, Hohmann M, Brugger P. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci. 2006;26:6469–6472. doi: 10.1523/JNEUROSCI.0804-06.2006. - DOI - PMC - PubMed

LinkOut - more resources