Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug 15;51(16):4371-7.

Frequency of urination and its effects on metabolism, pharmacokinetics, blood hemoglobin adduct formation, and liver and urinary bladder DNA adduct levels in beagle dogs given the carcinogen 4-aminobiphenyl

Affiliations
  • PMID: 1868460

Frequency of urination and its effects on metabolism, pharmacokinetics, blood hemoglobin adduct formation, and liver and urinary bladder DNA adduct levels in beagle dogs given the carcinogen 4-aminobiphenyl

F F Kadlubar et al. Cancer Res. .

Abstract

The human urinary bladder carcinogen, 4-aminobiphenyl (ABP), is known to undergo hepatic metabolism to an N-hydroxy arylamine and its corresponding N-glucuronide. It has been proposed that these metabolites are both transported through the blood via renal filtration to the urinary bladder lumen where acidic pH can facilitate the hydrolysis of the N-glucuronide and enhance the conversion of N-hydroxy-4-aminobiphenyl (N-OH-ABP) to a reactive electrophile that will form covalent adducts with urothelial DNA. Blood ABP-hemoglobin adducts, which have been used to monitor human exposure to ABP, are believed to be formed by reactions within the erythrocyte involving N-OH-ABP that has entered the circulation from the liver or from reabsorption across the urothelium. To test these hypotheses directly, experimental data were obtained from female beagles given [3H]ABP (p.o., i.v., or intraurethrally). [3H]N-OH-ABP (i.v. or intraurethrally), or [3H]N-OH-ABP N-glucuronide (i.v.). Analyses included determinations of total ABP in whole blood and plasma, ABP-hemoglobin adducts in blood erythrocytes, ABP and N-OH-ABP levels (free and N-glucuronide) in urine, urine pH, frequency of urination (controlled by urethral catheter), rates of reabsorption of ABP and N-OH-ABP across the urothelium, and apparent volumes of distribution in the blood/tissue compartment. The major ABP-DNA adduct, N-(guan-8-yl)-4-aminobiphenyl, was also measured in urothelial and liver DNA using a sensitive immunochemical method. An analog/digital hybrid computer was then utilized to construct a multicompartmental pharmacokinetic model for ABP and its metabolites that separates: (a) absorption; (b) hepatic metabolism and distribution in blood and tissues; (c) ABP-hemoglobin adduct formation; (d) hydrolysis and reabsorption in the urinary bladder lumen; and (e) excretion. Using this model, cumulative exposure of the urothelium to free N-OH-ABP was simulated from the experimental data and used to predict ABP-DNA adduct formation in the urothelium. The results indicated that exposure to N-OH-ABP and subsequent ABP-DNA adduct formation are directly dependent on voiding frequency and to a lesser extent on urine pH. This was primarily due to the finding that, after p.o. dosing of ABP to dogs, the major portion of the total N-OH-ABP entering the bladder lumen was free N-OH-ABP (0.7% of the dose), with much lower amounts as the acid-labile N-glucuronide (0.3% of the dose).(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources