Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 15;66(2):218-25.
doi: 10.1016/j.colsurfb.2008.06.014. Epub 2008 Jul 3.

Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering

Affiliations

Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering

Lihong Lao et al. Colloids Surf B Biointerfaces. .

Abstract

The surfaces of poly(L-lactide) (PLLA) microspheres were modified by chitosan via a method of hydrolysis and grafting-coating to improve their compatibility to chondrocytes. The PLLA microspheres with a diameter of 74-150 microm were fabricated by an oil/water emulsion solvent evaporation method, followed by hydrolysis in alkaline solution to produce a larger number of carboxyl groups. Using water-soluble carbodiimide as a coupling reagent, chitosan was covalently grafted onto the microspheres. Due to the physical entanglement and insolubility at neutral pH, unbonded chitosan molecules were stably remained to yield a large amount of coated chitosan. Biological performance of the control PLLA and the chitosan-coated PLLA microspheres were assessed by in vitro culture of rabbit auricular chondrocytes. After 24h and 7d culture, the chitosan-coated PLLA microspheres, especially the ones with larger chitosan amount, exhibited stronger ability to promote cell attachment and proliferation, and maintain the secretion function of the chondrocytes. Therefore, the chitosan-coated PLLA microspheres can be potentially used as the injectable cell microcarriers for chondrogenesis in cartilage tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources