Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 1;76(7):862-72.
doi: 10.1016/j.bcp.2008.07.009. Epub 2008 Jul 19.

Celecoxib inhibits 5-lipoxygenase

Affiliations

Celecoxib inhibits 5-lipoxygenase

Thorsten J Maier et al. Biochem Pharmacol. .

Abstract

Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used in the therapy of inflammatory and painful conditions. Various COX-2-independent pharmacological effects, such as a chemo-preventive and tumor-regressive activity have been suggested, but the respective non-COX-2 targets of celecoxib are still a matter of research. We now demonstrate that celecoxib inhibits 5-lipoxygenase (5-LO), a key enzyme in leukotriene (LT) biosynthesis. Celecoxib suppressed 5-LO product formation in ionophore A23187-activated human polymorphonuclear leukocytes (IC(50) approximately 8 microM). Similarly, celecoxib inhibited LTB(4) formation in human whole blood (IC(50) approximately 27.3 microM). Direct interference of 5-LO with celecoxib was visualized by inhibition of enzyme catalysis both in cell homogenates and with purified 5-LO (IC(50) approximately 23.4 and 24.9 microM, respectively). Related lipoxygenases (12-LO and 15-LO) were not affected by celecoxib. Other COX-2 inhibitors (etoricoxib and rofecoxib) or unselective NSAIDs (non-steroidal anti-inflammatory drugs, diclofenac) failed to inhibit 5-LO. In rats which received celecoxib (i.p.), the blood LTB(4) levels were dose-dependently reduced with an ED(50) value approximately 35.2 mg/kg. Together, celecoxib is a direct inhibitor of 5-LO in vitro and in vivo. These findings provide a potential molecular basis for some of the described COX-2-independent pharmacological effects of celecoxib.

PubMed Disclaimer

Publication types